ARTICLE

Volume 3,Issue 6

Cite this article
14
Citations
25
Views
20 August 2024

Cahn-Hillard 方程的虚拟元方法

莹莹 周1
Show Less
1 华北水利水电大学, 中国
© 2024 by the Author(s). Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

本文提出使用C0连续的非协调虚拟元方法求解二维的Cahn-Hillard 方程. 该虚拟元方法降低了经典虚拟元方法对连续性的要求. 本文利用自由度生成三种投影算子,再利用投影算子建立半离散格式,最后对生成的半离散格式进行误差估计。

Keywords
虚拟元方法
Cahn-Hillard 方程
误差估计
References

[1]DEDNER A, HODSON A. A higher order nonconforming virtual element method for the Cahn-Hilliard equation[J]. Journal of Scientific Computing, 2024, 101: 81.
[2] 郭靖.Cahn-Hilliard 方程的高精度快速算法及其应用研究[D]. 华南理工大学,2024.
[3]Antonietti, P. F., et al.,AC1virtual element method for the Cahn-Hilliard equation with polygonal meshes.” SIAM Journal on Numerical Analysis, 54(1), 34-57(2016).
[4]Deng, Q., & Wei, H.,Deng, Q., & Wei, H. A C¹ virtual element method for the Cahn–Hilliard equation on polygonal meshes. SIAM Journal on Numerical Analysis,55(2), 547-574(2017).
[5]Antonietti, P. F., et al. A mixed virtual element method for the Cahn-Hilliard equation.Mathematical Models and Methods in Applied Sciences, 28(09), 1743-1785(2018).
[6]Han, D., & Wang, X. A mixed virtual element method for the dynamical Cahn–Hilliard equation. Journal of Computational Physics, 419, 109398 (2020).
[7]Zhang, J., & Yang, X. An adaptive virtual element method for the Cahn-Hilliard equation. Computer Methods in Applied Mechanics and Engineering, 367, 113101(2020).
[8]Li, Y.,Chen, L. A second-order energy stable scheme for the Cahn-Hilliard equation using the virtual element method. Applied Numerical Mathematics, 169, 265-281(2021).
[9]Wu, S., & Li, M., A virtual element method for the coupled Cahn-Hilliard–Navier–Stokes system. Computer Methods in Applied Mechanics and Engineering, 377,113687(2022).
[10]Liu, H., Gao, F., A virtual element method for the anisotropic Cahn–Hilliard equation. Journal of Scientific Computing, 90(1), 13 (2022).
[11]Wang, K., & He, X., Efficient solver and preconditioning techniques for the virtual element discretization of the Cahn-Hilliard equation. Journal of Computational Physics,491, 112375. (2023).
[12]Zhang, B., Zhao, J., & Chen, S. (2020). The nonconforming virtual element method for fourth-order singular perturbation problem. Advances in Computational Mathematics, 46(1), 19.
[13]Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. No. 15 in Texts in applied mathematics, 3rd edn. Springer, New York (2008).
[14]Beirãoda Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199-214 (2013).
[15]Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation.SIAMJ.Numer.Anal.26(4),884-903(1989).
[16]Dedner, A., Hodson, A.: Robust nonconforming virtual element methods for general fourth-order problems with varying coefficients. IMA J. Numer. Anal. 42(2), 1364-1399 (2022).

Share
Back to top