Art and Design / EST / Volume 2 / Issue 3 / DOI: 10.61369/EST.8693
Cite this article
1
Download
9
Citations
27
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

耦合非线性可变(2+1)维Maccari 系统的精确显式解

璞 谭
Show Less
1 南华大学 数理学院, 南华大学 数理学院
EST 2024 , 2(3), 10–11;
Published: 20 March 2024
© 2024 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

本文利用动力系统定性理论和分支方法研究耦合非线性可变(2+1)维Maccari 系统,计算出它在参数条件不同的情况下的精确显式解。

Keywords
Maccari 系统
相图分支
精确解
References

[1]Seadawy, Aly, R.Three-Dimensional Weakly Nonlinear Shallow Water Waves Regime and its Traveling Wave Solutions[J].International Journal of Computational Methods, 2018.
[2]Seadawy A R. Three-dimensional weakly nonlinear shallow water waves regime and its traveling wave solutions[J].International Journal of Computational
Methods, 2018, 15(03): 1850017.
[3]Khater AH, Callebaut DK, Seadawy AR. General soliton solutions for nonlinear dispersive waves in convective type instabilities. Phys Scr 2006;74:384–93.
[4]Ting PJ, Xun GL. Exact solutions to Maccari’s system. Commun Theor Phys (Beijing, China) 2007;48:07–10.
[5] 刘正荣.微分方程定性方法和数值模拟[M].华南理工大学出版社,2013.
[6] 董海玲,唐娟,肖地长.带马尔可夫跳和可变迟滞的非线性耦合神经网络同步问题[J].应用概率统计,2022,38(06):836-846.
[7] 焦贤发,王如彬.刺激下可变耦合神经振子群活动的非线性随机演化模型[J].控制与决策,2005(08):897-900.
[8] 鲍鹏,姜忻良.离散元- 无限元非线性耦合法[J].华中科技大学学报(自然科学版),2004(11):91-93.
[9] 池坤, 高坤. 多故障耦合转子系统非线性动力学研究[J]. 技术与市场,2023,30(06):49-55.
[10] 陈静.PT 对称非局域非线性耦合系统中复合波的研究[D].山西大学,2023.

Share
Back to top
Educational Science Theory, Electronic ISSN: 2995-4843 Print ISSN: 2995-4835, Published by Art and Design