ARTICLE

Volume 2,Issue 1

Fall 2025

Cite this article
2
Download
7
Citations
18
Views
25 March 2025

仙人掌超支化多糖的结构表征与生物活性研究

淑云 席1 雅荟 许2
Show Less
1 1. 上海百雀羚日用化学有限公司, 1. 上海百雀羚日用化学有限公司
2 2. 北京东方淼森生物科技有限公司, 2. 北京东方淼森生物科技有限公司
CDCST 2025 , 2(1), 41–46; https://doi.org/10.61369/CDCST.10455
© 2025 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

为了分析仙人掌超支化多糖的结构及功效作用,通过单糖组成、甲基化、电镜扫描等方法阐明多糖结构;然后再采用生化、细胞等试验研究其生物活性。结果显示,仙人掌多糖的平均相对分子质量主要分布在6 kDa、1500 kDa,且低相对分子质量组分(OFP-1)是一种支化度为53.22%的超支化多糖。在功效方面,仙人掌多糖具有良好的抗氧化、抗刺激以及促进细胞迁移的功效,且OFP-1的功效作用远高于高相对分子质量组分(OFP-2)。因此,可以推测,OFPs的生物活性主要来源于低相对分子质量多糖,这一研究为仙人掌多糖在化妆品中的应用奠定了理论基础。

Keywords
仙人掌
超支化多糖
抗氧化
保护细胞
References

[1] Tao Y, Feng D. Dilute solution and rheological properties of hyperbranched polysaccharide from Pleurotus tuber-regium sclerotia[J]. Food Hydrocolloids, 2012, 28(1):151-158.
[2] Zhang Y, Wang J, Zhang L. Creation of Highly Stable Selenium Nanoparticles Capped with Hyperbranched Polysaccharide in Water[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2010, 26(22):17617.
[3] Chen L, Ge M, Zhu Y, et al. Structure, bioactivity and applications of natural hyperbranched polysaccharides[J]. Carbohydrate Polymers, 2019, 223115076.
[4] Chen L, Xu W, Lin S, et al. Cell wall structure of mushroom sclerotium (Pleurotus tuber regium): Part 1. Fractionation and characterization of soluble cell wall polysaccharides[J]. Food
Hydrocolloids,2014,36:189-195.
[5] Ginestra G, Parker M L, Bennett R N, et al. Anatomical, Chemical, and Biochemical Characterization of Cladodes from Prickly Pear [Opuntia ficus-indica (L.) Mill.] [J]. J Agric Food Chem, 2009, 57(21):10323-10330.
[6]韩雨露.仙人掌果多糖的结构表征、理化性质及抗氧化活性研究[D]. 合肥工业大学,2017.
[7] Tian Y, Zhao Y, Zeng H, et al. Structural characterization of a novel neutral polysaccharide from Lentinus giganteus and its antitumor activity through inducing apoptosis[J]. Carbohydrate Polymers, 2016, 154:231-240.
[8]龚欢,覃宝怡,施松善,等.制黄精多糖的结构表征及其抗氧化活性研究[J]. 中草药,2024,55(16):5418-5427.
[9] Jiaojiao Mou, Qiang Li, Weiwei Shi, et al. Chain conformation, physicochemical properties of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus and its in vitro fermentation by human gut microbiota-ScienceDirect[J]. Carbohydrate Polymers, 2020,228:115359-115359.
[10] Zhang M, Wang G, Lai F, et al. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lepidium meyenii[J]. Journal of Agricultural and Food Chemistry, 2016,64(9):1921-1931.
[11] Wang K, Wang J, Li Q, et al. Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes[J]. Food Research International,2014,62:223-232.
[12] Ribeiro L M D, Júnior C R A, Macedo D V R H G, et al. Polysaccharide-Based Formulations for Healing of Skin-Related Wound Infections: Lessons from Animal Models and Clinical Trials[J]. Biomolecules,2019,10(1):63-63.
[13] Thi-Phuong N, N. H P, Duc T D, et al. Polysaccharide and ethanol extracts of Anoectochilus formosanus Hayata: Antioxidant, wound-healing, antibacterial, and cytotoxic activities[J]. Heliyon,2023,9(3): e13559-e13559.
[14] Lorenzo D F, Silipo A, Molinaro A, et al. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties [J]. Carbohydrate Polymers, 2017, 157:128-136.
[15] Ge Y, Duan Y, Fang G, et al. Polysaccharides from fruit calyx of Physalis alkekengi var. francheti: Isolation, purification, structural
features and antioxidant activities[J]. Carbohydrate Polymers, 2008, 77 (2): 188-193.
[16] Capek P, Machová E, Turjan J. Scavenging and antioxidant activities of immunomodulating polysaccharides isolated from Salvia officinalis L.[J]. International Journal of Biological Macromolecules, 2008, 44 (1): 75-80.

Share
Back to top