ARTICLE

Volume 1,Issue 9

Cite this article
4
Download
9
Citations
24
Views
28 June 2025

液态金属中子产生靶装置设计仿真与试验研究

昱兆 李1 世龙 刘1 超 刘1
Show Less
1 中国原子能科学研究院核数据重点实验室, 中国
SSSD 2025 , 1(8), 31–34; https://doi.org/10.61369/SSSD.2025080023
© 2025 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

本研究工作以2.5 MeV 1 mA质子束流为设计参数,开展了液态金属中子产生靶小型装置的设计、仿真与试验验证。进行了流体流动和传热的理论分析,建立了液态金属循环管路的简化三维模型,利用流体软件同时进行了热工与流体仿真。以仿真结果为依据,设计搭建了小型的液态金属循环管路实验台架并使之运行。设计的液态金属中子产生靶装置主要由电磁泵、连接管道、靶室,热交换器构成,台架运行起来获得了流速为1.5 m/s,宽度30 mm,厚度4 mm的液态金属流层。以上研究结果为大功率液态金属中子产生靶的结构设计提供了理论与工程依据。

Keywords
液态金属回路
中子产生靶
有限元仿真
装置设计
References

 [1]Yano Y, Tomoyuki U, Takashi T, et al. Tensile Properties of Modified 316 Stainless Steel (PNC316) after Neutron Irradiation over 100 dpa[J]. Journal of Nuclear Science and Technology, 2023, 61(4): 521–529.
 [2]Yoon Y S, Kim J, Park H, et al. Development of A 14.8-MeV Mono-Energetic Neutron Field in Korea Research Institute of Standards and Science[J]. Radiation Protection Dosimetry, 2023, 199: 15-16.
 [3]Mark B C. Nuclear Science for the Manhattan Project and Comparison to Today's ENDF Data[J]. Nuclear Technology, 2021, 207, 24-61.
 [4]Wharton C J, Seabury E H, Krebs K M, et al. Chemical warfare agent identification by PGNAA: A comparison of Gamma-ray excitation by neutrons from a Cf-252 source, a DD neutron generator, and a DT Neutron generator[J]. Nuclear Science Symposium and Medical Imaging Conference, 2015: 1-4.
 [5] 王生, 傅世年, 屈化民, 等. 中国散裂中子源强流质子加速器设计、研制及调试运行[J]. 原子能科学技术, 2022, 56(9): 1747-1759.
 [6] 刘玉国,刘猛,柯建林, 等. 小型D-D中子发生器氘靶的热流固耦合分析[J]. 核技术, 2017, 40(01): 28-33.
 [7] 姚泽恩, 陈尚文, 苏桐龄, 等. 高速旋转氚钛靶系统设计和靶温度的数值模拟[J]. 核技术, 2004, 27(10): 787-791.
 [8]Bernardi D, Ibarra A, Arbeiter F, et al. The IFMIF-DONES Project: Design Status and Main Achievements Within the EUROfusion FP8 Work Programme[J]. Journal of Fusion Energy, 2022, 41(24).
 [9]Paul M, Tessler M, Friedman M, et al. Reactions along the astrophysical s-process path and prospects for neutron radiotherapy with the Liquid - Lithium Target (LiLiT) at the Soreq Applied Research Accelerator Facility (SARAF)[J]. The European Physical Journal A, 2019, 55:44.
 [10]Eliyahu I, Berkovic G, Vaintraub S, et al. Optical Measurements of the thickness of the Gallium Indium free surface jet for the SARAF beam dump and neutron source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1053(168320).
 [11]Tony A G, John R H, Thomas J M. Overview of the Spallation Neutron Source (SNS) with emphasis on target systems[J]. Journal of Nuclear Materials, 2003, 318: 1-13.
 [12]Masatoshi A, Ryoichi K, Mitsutaka N, et al. Recent Developments of Instruments in a Spallation Neutron Source at J-PARC and Those Prospects in the Future[J]. Journal of the Physical Society of of Japan, 2013, 24.
 [13] 薛晓艳, 张卫卫, 左浩毅, 等. 氩气驱动液态锂回路的总体设计及初步运行结果[J]. 核聚变与等离子体物理, 2015, 35(02): 170-174.
 [14] 张学学. 热工基础3版. [M]. 北京:高等教育出版社, 2015.
 [15] 闻建龙. 工程流体力学[M]. 北京:机械工业出版社, 2018.

Share
Back to top