Volume 3,Issue 1
Fall 2025
电氢耦合视角下我国钢铁 - 电力行业协同减碳路径研究
摘要:【目的】钢铁行业是我国重要的能源消费与碳排放行业,未来将通过电能、氢能替代等过程与电力、氢能行业深度耦合,其能否实现多能耦合下的高质量协同转型降碳,对我国整体实现碳达峰与碳中和目标有重要影响。【方法】基于自下而上的综合评估模型,从电氢耦合与跨行业协同视角,对钢铁与电力行业协同节能降碳路径及成本进行对比分析。【结果】钢铁行业能源消费与碳排放已经实现达峰,未来呈现稳步下降趋势。在深度电氢耦合推动下,2060 年钢铁行业能源消费和碳排放较 2020 年分别下降 87% 和 93%,以电能为主、氢能为辅的深度电氢耦合发展场景减碳潜力最高,单位减排成本相对较低,是较为推荐的转型发展模式。未来钢铁行业转型会通过电能替代、氢能替代将降碳压力转移至电力部门,发电、制氢环节的清洁程度直接影响到协同转型质量。【结论】该研究发现有助于持续优化电力结构,充分利用绿氢能源,以高质量电氢耦合模式推动钢铁与电力行业的高质量协同转型。
[1] 魏一鸣,余碧莹,唐葆君,等.中国碳达峰碳中和时 间表与路线图研究[J].北京理工大学学报 ( 社会科 学版 ),2022,24(4):13-26. WEI Y M,YU B Y,TANG B J,et al.Roadmap for achieving China’s carbon peak and carbon neutrality pathway[J]. Journal of Beijing Institute of Technology (Social Sciences Edition),2022,24(4):13-26.
[2] 许洪华, 邵桂萍, 鄂春良, 等.我国未来能源系统 及能源转型现实路径研究[J].发电技术,2023, 44(4):484-491. XU H H,SHAO G P,E C L,et al.Research on China’s future energy system and the realistic path of energy transformation[J]. Power Generation Technology,2023, 44(4):484-491.
[3] 胡山鹰,金涌,张臻烨.发展新质生产力,实现碳中 和[J].发电技术,2025,46(1):1-8. HU S Y,JIN Y,ZHANG Z Y.Developing new quality productive forces to achieve carbon neutrality[J]. Power Generation Technology,2025,46(1):1-8.
[4] 邹风华,朱星阳,殷俊平,等.“双碳”目标下建筑 能源系统发展趋势分析[J].综合智慧能源,2024, 46(8): 36-40. ZOU F H, ZHU X Y, YIN J P, et al. Development trend analysis on building energy systems under“dual carbon”target[J]. Integrated Intelligent Energy, 2024, 46(8): 36-40.
[5] DONG J C,CAI B F,ZHANG S H,et al.Closing the gap between carbon neutrality targets and action: technology solutions for China’s key energy-intensive sectors[J]. Environmental Science & Technology,2023, 57(11):4396-4405.
[6] 赵长红,张李琳,邵云姝,等.发电上市公司低碳信 息披露与低碳转型效率研究[J].发电技术,2024, 45(6):1121-1134. ZHAO C H,ZHANG L L,SHAO Y S,et al.Research on low carbon information disclosure and low carbon transition efficiency of listed power generation companies[J]. Power Generation Technology,2024,45(6):1121-1134.
[7] 杨阳,杨东泰,张超群,等.双碳背景下火电厂低碳 化改造技术路径及经济分析[J].电力科技与环保, 2025,41(1):13-26. YANG Y, YANG D T, ZHANG C Q,et al.Tech-economic and carbon emissions analysis of net zero emissions technologies under the background of carbon peaking and carbon neutrality[J]. Electric Power Environmental Protection,2025,41(1):13-26.
[8] 张琦,田硕硕,沈佳林.中国钢铁行业碳达峰碳中和 时间表与路线图[J].钢铁,2023,58(9):59-68. ZHANG Q,TIAN S S,SHEN J L.Roadmap and timetable for achieving carbon peak and carbon neutrality of China’s iron and steel industry[J]. Iron & Steel,2023, 58(9):59-68.
[9] 薛英岚,张静,刘宇,等.“双碳”目标下钢铁行业控 煤降碳路线图[J].环境科学,2022,43(10):4392- 4400. XUE Y L,ZHANG J,LIU Y,et al.Roadmap of coal control and carbon reduction in the steel industry under the carbon peak and neutralization target[J]. EnvironmentalScience,2022,43(10):4392-4400.
[10] 刘惠,蔡博峰,张立,等.中国电力行业 CO2减排技 术及成本研究[J].环境工程,2021,39(10):8-14. LIU H,CAI B F,ZHANG L,et al.Research on carbon dioxide abatement technologies and cost in China’s power industry[J]. Environmental Engineering,2021,39(10): 8-14.
[11] 罗玉伶,彭道刚,赵慧荣,等.面向高耗能企业铝加 工过程的节能减碳潜力评价及画像研究[J].综合智 慧能源,2024, 46(8): 1-11. LUO Y L, PENG D G, ZHAO H R, et al. Evaluation on energy-saving and carbon-reduction potential of aluminum processing in high-energy-consuming enterprises and their profiles[J]. Integrated Intelligent Energy, 2024, 46(8): 1-11.
[12] 董金池, 汪旭颖, 蔡博峰, 等.中国钢铁 行业 CO2减排技术及成本研究 [J]. 环境工程,2021, 39(10):23-31. DONG J C,WANG X Y,CAI B F,et al.Mitigation technologies and marginal abatement cost for iron and steel industry in China[J]. Environmental Engineering,2021, 39(10):23-31.
[13] CHEN H T,ZHANG B,WANG Z H.Hidden inequality in household electricity consumption:Measurement and determinants based on large-scale smart meter data[J]. China Economic Review,2022,71:101739.
[14] 张杰,李强,基于 CGE 模型的高炉 + 转炉炼钢企业碳 减排效益评价研究[J].工业加热,2023. 52(12):43- 47+51. ZHANG J,LI Q. Research on carbon emission reduction benefit evaluation of blast furnace + converter steel enterprises based on CGE model[J]. Industrial Heating, 2023,52(12): 43-47+51.
[15] 李晨光,王帅,郭雨蕙.碳中和背景下钢铁行业低碳 转型发展政策工具与路径分析:基于动态 CGE 模型的 模拟研究[J].经济问题探索,2023(1):34-59. LI C G,WANG S,GUO Y H.Analysis of policy tools and pathways for low-carbon transformation development of iron and steel industry:a simulation study based on dynamic CGE model[J]. Inquiry into Economic Issues,2023(1): 34-59.
[16] 李志俊,原鹏飞.去产能战略的影响评价及建议:基 于动态 CGE 模型的研究[J].中国软科学,2018(1): 10-18. LI Z J,YUAN P F.Evaluation and route of overcapacity cutting:analysis based on dynamic computable general equilibrium model[J]. China Soft Science,2018(1):10-18.
[17] JIANG H D,HAO W T,XU Q Y,et al.Socio-economic and environmental impacts of the iron ore resource tax reform in China:a CGE-based analysis[J]. Resources Policy,2020,68:101775.
[18] 张攀路, 都沁军, 张凯旋, 等.中国钢铁行业碳排 放:达峰情景与中和路径[J].环境科学,2024, 45(11):6336-6343. ZHANG P L,et al. Carbon emissions in China’s iron and steel industry: Peak scenarios and neutralization pathways[J]. Environmental Science,2024,45(11):6336-6343.
[19] 魏宁,刘胜男,李桂菊,等.CCUS 对中国粗钢生产的 碳减排潜力评估[J].中国环境科学,2021,41(12): 5866-5874. WEI N,LIU S N,LI G J,et al.Mitigation potential evaluation of CO2 capture and storage in crude steel industries of China[J]. China Environmental Science, 2021,41(12):5866-5874.
[20] 宋亚植,李银,李仲飞.基于产出效率的中国钢铁行 业碳配额分配方案[J].资源科学,2023,45(2): 333-343. SONG Y Z,LI Y,LI Z F.Carbon quota scheme for China’s iron and steel industry based on output efficiency[J]. Resources Science,2023,45(2):333-343.
[21] 齐绍洲, 徐珍珍, 杨芷萱.欧盟碳边境调节机制下 中国钢铁行业的碳配额分配策略[J].资源科学, 2022,44(2):274-286. QI S Z,XU Z Z,YANG Z X.Carbon allowance allocation strategy in China’s steel industry under the EU carbon border adjustment mechanism[J]. Resources Science, 2022,44(2):274-286.
[22] LIU D C,WANG P,SUN Y,et al.Co-abatement of carbon and air pollutants emissions in China’s iron and steel industry under carbon neutrality scenarios[J]. Renewable and Sustainable Energy Reviews,2024,191:114140.
[23] 逯飞,薛英岚,李梧森,等.双碳目标下河北钢铁行 业减污降碳路径探讨[J].环境工程,2023,41(S2): 332-336. LU F,XUE Y L,LI W S,et al.Discussion on the path of pollution reduction and carbon reduction in Hebei iron and steel industry under the dual carbon target[J]. Environmental Engineering,2023,41(S2):332-336.
[24] 邹安全,罗杏玲,全春光.基于 EIO-LCA 的钢铁产品 生命周期碳排放研究[J].管理世界,2013,29(12): 178-179. ZOU A Q,LUO X L,QUAN C G.Research on life cycle carbon emissions of steel products based on EIO-LCA[J]. Management World,2013,29(12):178-179.
[25] 禹 湘, 娄 峰, 谭 畅. 基 于 CIE-CEAM 模 型 的 中 国 工业“双碳”路径模拟[J].中国人口·资源与环境, 2022,32(7):49-56. YU X,LOU F,TAN C.A simulation study of the pathway of achieving the ‘dual carbon’ goals in China’s industrial sectors based on the CIE-CEAM Model[J]. China Population,Resources and Environment,2022,32(7): 49-56.
[26] LI R,TANG B J,SHEN M,et al.Low-carbon development pathways for provincial-level thermal power plants in China by mid-century[J]. Journal of Environmental Management,2023,342:118309.
[27] 张静,杨萌,张伟,等.“双碳”背景下河南省电力 行业中长期控煤降碳路径[J].环境科学,2024, 45(3):1285-1292. ZHANG J,YANG M,ZHANG W,et al.Coal control and carbon reduction path in Henan Province’s power industry under the carbon peak and neutralization target:a medium-and long-term study[J]. Environmental Science, 2024,45(3):1285-1292.
[28] 段文娇, 郎建垒, 程水源, 等.京津冀地区钢铁行 业污染物排放清单及对 PM2.5影响[J].环境科学, 2018,39(4):1445-1454. DUAN W J,LANG J L,CHENG S Y,et al.Air pollutant emission inventory from iron and steel industry in the Beijing-Tianjin-Hebei Region and its impact on PM2.5[J]. Environmental Science,2018,39(4):1445- 1454.
[29] REN M,LU P T,LIU X R,et al.Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality[J]. Applied Energy,2021,298: 117209.
[30] 邢晓雯,黄琳,胡建林.江苏省电力行业不同低碳发展 路径的二氧化碳与大气污染物协同减排效益分析[J] .环境科学,2024,45(11):6326-6335. XING X W,HUANG L,HU J L. Co-benefits of CO2 and air pollutant reduction under different low-carbon development pathways in Jiangsu’s power industry[J]. Environmental Science,2024,45(11):6326-6335.
[31] 宋晓聪, 杜帅, 邓陈宁, 等.钢铁行业生命周期碳 排放核算及减排潜力评估[J].环境科学,2023, 44(12):6630-6642. SONG X C,DU S,DENG C N,et al.Life cycle carbon emission accounting and emission reduction potential assessment of steel industry[J]. Environmental Science, 2023,44(12):6630-6642.
[32] FAN Z Y,FRIEDMANN S J.Low-carbon production of iron and steel:Technology options,economic assessment,and policy[J]. Joule,2021,5(4):829-862.
[33] CHEN H T,WANG Z H,XU S,et al.Energy demand, emission reduction and health co-benefits evaluated in transitional China in a 2 ℃ warming world[J]. Journal of Cleaner Production,2020,264:121773.
[34] CAO J X,ZHANG J,CHEN Y,et al.Current status, future prediction and offset potential of fossil fuel CO2 emissions in China[J]. Journal of Cleaner Production, 2023,426:139207.
[35] 单思珂,刘含笑,刘美玲,等.我国火电行业碳足迹 评估综述[J].发电技术,2024,45(4):575-589. SHAN S K,LIU H X,LIU M L,et al.Review of carbon footprint for thermal power industry in China[J]. Power Generation Technology,2024,45(4):575-589.
[36] 吴琼,马昊,任洪波,等.基于 LEAP 模型的临港新 片区中长期碳排放预测及减排潜力分析[J].环境科 学,2024,45(2):721-731. WU Q,MA H,REN H B,et al.Medium and long-term carbon emission projections and emission reduction potential analysis of the Lingang special area based on the LEAP model[J]. Environmental Science,2024,45(2):721-731.
[37] 耿直, 陈柯宇, 刘媛媛, 等.太阳能与燃气 - 蒸汽 联合循环互补性能分析[J].综合智慧能源,2023, 45(12): 79-86. GENG Z, CHEN K Y, LIU Y Y, et al. Complementarity analysis of solar energy and gas turbine combined cycle[J]. Integrated Intelligent Energy, 2023, 45(12): 79-86.
[38] 刘清梅,张福明.钢铁工业减碳与 CO2资源化利用技 术的研究进展[J].钢铁,2024,59(2):13-24. LIU Q M,ZHANG F M.Research progress of carbon reduction and CO2 resource technology utilization in iron and steel industry[J]. Iron & Steel,2024,59(2):13-24.
[39] 张贤,李凯,马乔,等.碳中和目标下 CCUS 技术发 展定位与展望[J].中国人口·资源与环境,2021, 31(9):29-33. ZHANG X,LI K,MA Q,et al.Orientation and prospect of CCUS development under carbon neutrality target[J]. China Population,Resources and Environment,2021, 31(9):29-33.
[40] 郑励行,董耿林,汪鹏,等.钢铁行业氢冶金技术的 替代潜力与经济性分析:以广东为例[J].新能源进 展,2023,11(6):583-592. ZHENG L X,DONG G L,WANG P,et al.Substitution potential and economic analysis of hydrogen metallurgy technology in iron and steel industry:a case study of Guangdong Province[J]. Advances in New and Renewable Energy,2023,11(6):583-592.
[41] 朱法华,徐静馨.双碳背景下中国与主要发达国家电 力低碳转型比较[J].电力科技与环保,2024, 40(6): 561-571. ZHU F H, XU J X.Comparison of low-carbon transformation in electricity between China and major developed countries under the background of carbon peaking and carbon neutrality[J]. Electric Power Environmental Protection,2024, 40(6): 561-571.
[42] LI Z L,HANAOKA T.Plant-level mitigation strategies could enable carbon neutrality by 2060 and reduce non-CO2 emissions in China’s iron and steel sector[J]. One Earth, 2022,5(8):932-943.
[43] WANG Z H,CHEN H T,HUO R,et al.Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production,2020,249: 119362.
[44] 中国钢铁工业协会电炉短流程炼钢发展研究课题组 .我国电炉短流程炼钢发展研究[J].冶金管理, 2023(20):4-20. Research Group on the Development of Electric Furnace Short Process Steelmaking of China Iron and Steel Industry Association.Research on the development of electric furnace short process steelmaking in China[J]. China Steel Focus,2023(20):4-20.
[45] 富志生.转炉炼钢工序能耗计算与分析[J].冶金能 源,2010,29(4):15-17,33. FU Z S.Converter steelmaking process calculation and analysis of energy consumption[J]. Energy for Metallurgical Industry,2010,29(4):15-17,33.
[46] 张福明,颉建新,殷瑞钰.钢铁制造流程炼铁区段耗 散结构的解析[J].钢铁,2022,57(3):1-9. ZHANG F M,XIE J X,YIN R Y.Analysis on dissipative structure of ironmaking procedure for iron and steel manufacturing process[J]. Iron & Steel,2022,57(3):1-9.
[47] 刘泽淼,谢志辉,张泽龙,等.焦化工序能耗及二氧 化碳排放量计算与参数影响[J].钢铁研究,2016, 44(2):1-4+40. LIU Z M,XIE Z H,ZHANG Z L,et al.Calculation of energy consumption and CO2 emission and investigation of the parameter influences for coking process[J]. Research on Iron and Steel,2016,44(2):1-4+40.
[48] 王志轩.碳达峰、碳中和目标实现路径与政策框架研 究[J].电力科技与环保,2021, 37(3): 1-8. WANG Z X.Research on the pathway and policy framework of achieving carbon peak and carbon neutrality[J]. Electric Power Environmental Protection,2021, 37(3): 1-8