Volume 3,Issue 1
Fall 2025
新型太阳能吸收- 压缩复叠制冷循环的特性研究
摘要:为提高太阳能利用率,节约高品位电能,根据温湿度独立控制空调系统所需冷量的品位不同,提出了一种新型低温驱动的太阳能吸收- 压缩复叠制冷循环系统(LTSACDR)。通过EES 软件建立了系统各部件的热力学模型,进行热力计算,分析了新型循环的性能。并将新系统与太阳能吸收- 压缩复叠双温制冷循环进行性能比较。结果表明,相较于参考系统,LT-SACDR 系统能够通过降低发生压力,扩大太阳能温度利用区间,提高太阳能利用率,并且具有更好的热力学性能和节能特性。此外,当发生压力为1.22kPa 时,吸收子系统的COP 达到最大值,为0.75。
[1] 崔炜,满延春,杨汝岱.中国地区经济增长、能源消费结构与“碳中和”[J].消费经济: 1-17.
CUI W, MAN Y, YANG R. Regional economic growth,energy consumption structure and "carbon neutrality" in China [J]. Consumption Economy: 1-17.
[2] 朱维群,王倩.碳中和目标下的化石能源利用新技术路线开发[J].发电技术,2021,42(1):3-7.
ZHU Weiqun, WANG Qian.Development of New Technological Routes for Fossil Energy Utilization Under the Goal of Carbon Neutral[J].Power Generation Technology,2021, 42(1):3-7.
[3] 张昕宇,边萌萌,李博佳,何涛,王敏,黄祝连,张磊.建筑太阳能热利用技术研究进展与展望[J].建筑科学,2022,38(10): 268-274.
ZHANG X, BIAN M, LI B, HE T, WANG M, HUANG Z,ZHANG L. Research progress and prospect of building solar thermal utilization technology [J]. Building Science, 2022,38(10): 268-274.
[4] 赵春生,杨君君,王婧,等.燃煤发电行业低碳发展路径研究[J].发电技术,2021,42(5):547-553.
ZHAO Chunsheng, YANG Junjun, WANG Jing, et al.Research on Low-carbon Development Path of Coal-fired Power Industry[J].Power Generation Technology, 2021,42(5):547-553.
[5] Kohlenbach P, Jakob U. Solar cooling: the earthscan expert guide to solar cooling systems. 1st ed. UK: Taylor & Francis Ltd; 2014.
[6] Ali A H H, Noeres P, Pollerberg C. Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide water absorption chiller [J]. Solar Energy,2008,82(11): 1021-1030.
[7] 高小童,秦志龙,高新宇.含海上风电-光伏-储能的多能源发输电系统可靠性评估[J].发电技术,2022,43(4):626-635.
GAO Xiaotong, QIN Zhilong, GAO Xinyu.Reliability Evaluation of Multi-Energy Generation and Transmission SystemWith OffshoreWind Power-Photovoltaic-Energy Storage[J].Power Generation Technology, 2022, 43(4):626-635.
[8] Venegas M, Rodríguez-Hidalgo M C, Salgado R, Lecuona A, Rodríguez P, Gutiérrez G. Experimental diagnosis of the influence of operational variables on the performance of a
solar absorption cooling system [J]. Applied Energy, 2011,88(4): 1447-1454.
[9] Chinnappa J C V, Crees M R, Srinivasa Murthy S, Srinivasan K. Solar-assisted vapor compression -absorption cascaded air-conditioning systems [J]. Solar Energy, 1993,50(5):453-458.
[10] Kairouani L, Nehdi E. Cooling performance and energy saving of a compression–absorption refrigeration system assisted by geothermal energy [J]. Applied Thermal Engineering, 2006,26(2): 288-294.
[11] He H, Wang L, Yuan J, Wang Z, Fu W, Liang K. Performance evaluation of solar absorption compression cascade refrigeration system with an integrated air-cooled compression cycle [J]. Energy Conversion and Management, 2019,201: 112153.
[12] 王泽众,黄平瑞,魏高升,等.太阳能热发电固–气两相化学储热技术研究进展[J].发电技术,2021,42(2):238-246.
WANG Z Z, HUANG P R, WEI G S, et al. Research Progress of Solid-Gas Two-Phase Chemical Heat Storage Technology for Solar Thermal Power Generation[J].Power Generation Technology, 2021, 42(2):238-246.
[13] Jain V, Sachdeva G, Kachhwaha S S. Comparative performance study and advanced exergy analysis of novel vapor compression-absorption integrated refrigeration system [J]. Energy Conversion and Management, 2018,172:81-97.
[14] Xu Y, Jiang N, Wang Q, Chen G. Comparative study on the energy performance of two different absorption-compression refrigeration cycles driven by low-grade heat [J]. Applied
Thermal Engineering, 2016,106: 33-41.
[15] Price G A, Barlaz M A, Hater G R. Nitrogen management in bioreactor landfills [J]. Waste Management, 2003,23(7):675-688.
[16] 谢明熹,柴少伟,代彦军 . 真空管内聚光集热器光学性能研究[J].工程热物理学报,2022,43(10): 2612-2622 %@ 0253-231X %L 11-2091/O4 %W CNKI. XIE M, CHAI S, DAI Y. Study on optical properties of concentrator in vacuum tube [J]. Chinese Journal of Engineering Thermophysics, 2022, 43(10): 2612-2622%@0253-231X % L11-2091 / O4% CNKI.
[17] 袁铁江,杨洋,董力通.与典型日负荷匹配的风电出力场景构建方法[J].电力建设,2022, 43(11): 132-141.
YUAN Tiejiang, YANG Yang, DONG Litong. Construction method of wind power output scenario matching with typical daily load[J]. Electric Power Construction, 2022, 43(11):132-141.
[18] Xu Y, Jiang N, Wang Q, Chen G. Comparative study on the energy performance of two different absorption-compression refrigeration cycles driven by low-grade heat [J]. Applied
Thermal Engineering, 2016,106: 33-41.
[19] 邓辉, 李清, 唐巍, 等. 一种新型增压风机与传统增压风机经济性比较[J]. 电力科技与环保,2020,36(3):48-52.
DENG Hui,LI Qing,TANG Wei,et al. Economic comparision between a new type of blower fan and conventional fan[J]. Electric Power Technology and Environmental Protection,2020,36(3):48-52.
[20] 闫庆友, 史超凡, 秦光宇, 等.基于近端策略优化算法的电化学/氢混合储能系统双层配置及运行优化[J].电力建设,2022, 43(8): 22-32.
YAN Qingyou, SHI Chaofan, QIN Guangyu, et al. Research on two-layer configuration and operation optimization based on proximal policy optimization for electrochemical/hydrogen
hybrid energy storage system[J]. Electric Power Construction,2022, 43(8): 22-32.
[21] 宋梦宇, 王林, 曹艺飞, 等.太阳能吸收-压缩复叠双温制冷系统特性研究[J].工程热物理学报,
2021,42(07):1651-1658.S O N G M, W A N G L , C A O Y , e t a l . S t u d y o n t h e
characteristics of solar absorption-compression cascade double-temperature refrigeration system [J]. Chinese Journal of Engineering Thermophysics, 2021, 42(07):1651-1658.
[22] 许传博,赵云灏,王晓晨,等.碳中和愿景下考虑电氢耦合的风光场站氢储能优化配置[J].电力建设,2022, 43(1): 10-18.
XU Chuanbo, ZHAO Yunhao, WANG Xiaochen, et al. Optimal configuration of hydrogen energy storage for wind and solar power stations considering electricity-hydrogen coupling under carbon neutrality vision[J]. Electric Power Construction, 2022, 43(1): 10-18.
[23] Wang J, Han Z, Liu Y, Zhang X, Cui Z. Thermodynamic analysis of a combined cooling, heating, and power system integrated with full-spectrum hybrid solar energy device [J]. Energy Conversion and Management, 2020: 113596.
[24] Wang J, Chen Y, Lior N, Li W. Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors [J]. Energy, 2019,185: 463-476.