ARTICLE

Volume 3,Issue 9

Cite this article
3
Download
36
Citations
224
Views
20 August 2025

基于SLS 复合维生素B 配方在额叶皮质发育与专注力维持中的机制研究

Jing Li1 Cooper Jade1 Kwok Jacob1
Show Less
1 奥克兰分子生物科学创新中心, 新西兰
MRP 2025 , 3(8), 18–20; https://doi.org/10.61369/MRP.2025080011
© 2025 by the authors. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

SLS 复合维生素 B 含多种 B 族维生素及甘氨酸锌、酒石酸氢胆碱等成分,通过参与能量代谢、促进神经发育、调节神经递质平衡、减轻氧化应激与炎症,调控额叶皮质功能以支持专注力。临床研究显示,其对 4-12 岁注意力缺陷青少年儿童改善显著,12-16 岁效果有限,可能与生理发育、任务复杂度等相关。本文为后续明确剂量效应关系与分子机制、优化配方以满足不同人群需求,提供了重要参考。

Keywords
复合维生素B
大脑
额叶皮质发育
专注力
功效机制
References

[1]Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485.
[2]Gogtay, N. , Giedd, J. N. , Lusk, L. , Hayashi, K. M. , Greenstein, D. , & Vaituzis, A. C. . (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174-8179.
[3]Miller, E. K. , & Cohen, J. D. . (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202.
[4]Fuster, J. M. (2008). The Prefrontal Cortex (4th ed.). Academic Press.
[5]Ridderinkhof, K. R. , Ullsperger, M. , Crone, E. A. , & Nieuwenhuiss, S. . (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447.
[6]Petersen, S. E. , & Posner, M. I. . (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73-89.
[7]Arnsten, A. F. T. , & Rubia, K. . (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry, 51(4), 356-367.
[8]Robbins, T. W. , & Arnsten, A. F. T. . (2009). Robbins tw, arnsten aft. the neuropsychopharmacology of fronto-executive function: monoaminergic modulation. annu revneurosci 32: 267-287. Annual Review of Neuroscience, 32(1), 267-287.
[9]Block, M. L., and Calderón-Garcidueñas, L. (2009). Air Pollution: Mechanisms of Neuroinflammation and CNS Disease. Trends Neurosci. 32 (9), 506–516.
[10]Kennedy, D. O. (2016). B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients, 8(2), 68.
[11]Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr. 2016;36:211–39.
[12]Mikkelsen, Kathleen, Apostolopoulos, Vasso, Prakash, & Monica, et al. (2017). The effects of vitamin b on the immune/cytokine network and their involvement in depression. Maturitas: International Journal for the Study of the Climacteric.
[13]Gibson, G. E. , & Blass, J. P. . (2007). Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxidants & Redox Signaling, 9(10), 1605-19.
[14]Bruce N Ames. (2012). Vitamin and mineral inadequacy accelerates aging-associated diseases. General Information.
[15]Hansen, R. E. , Roth, D. , & Winther, J. R. . (2009). Hansen re, roth d, winther jr. quantifying the global cellular thiol-disulfide status. proc natl acad sci usa 106: 422-427. Proceedings of the National Academy of Sciences, 106(2), 422-427.
[16]Reynolds, E. . (2006). Vitamin b12, folic acid, and the nervous system. Lancet Neurology, 5(11), 949-960.
[17]Black, M. M. . (2008). Effects of vitamin b12 and folate deficiency on brain development in children. Food & Nutrition Bulletin, 29(2 Suppl), 126-31.
[18]Czeizel, A. , & DudÁS, I. . (1993). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. Obstetrical and gynecological survey.

Share
Back to top