ARTICLE

Volume 2,Issue 4

Fall 2024

Cite this article
1
Download
0
Views
20 April 2024

冻融与盐腐蚀对混凝土动态力学性能的影响

佳航 熊1,2
Show Less
1 1. 青海大学土木水利学院,青海 西宁 810016, 1. 青海大学土木水利学院,青海 西宁 810016
2 2. 青海省建筑节能材料与工程安全重点实验室,青海 西宁 810016, 2. 青海省建筑节能材料与工程安全重点实验室,青海 西宁 810016
UAID 2024 , 2(4), 25–28; https://doi.org/10.61369/UAID.10630
© 2024 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

为研究硫酸盐腐蚀与冻融循环耦合作用下对混凝土动态力学性能的影响,利用分离式霍普金森杆装置,对于0、15、30次耦合作用下的C40混凝土试块,冲击气压分别为0.175、0.2、0.25、0.3MPa,分析了不同应变率下的动态性能。结果表明:混凝土受冻融腐蚀后,动态峰值应力与动态峰值应变均有明显下降。在应变率逐渐增大时,伴随着冻融腐蚀次数的增加混凝土应力峰值下降趋势逐渐增大。应变率达到196.24 s-1时,应力峰值下降为22.92%。当应变率相近时,DIF 值随试件冻融腐蚀天次数的升高而增加,同时冻融腐蚀浸泡时间的延长,对试件速率敏感性有所提高。高应变率(127 ~ 194 s-1) 状态下,冻融腐蚀耦合作用下试件内部裂缝受阻碍,冲击韧性呈现出先减小后增大的趋势。

Keywords
硫酸钠腐蚀
SHPB
动态力学性能
冲击荷载
应变率
References

[1] 仵江涛,何锐,王笑风,等.硫酸盐侵蚀混凝土内外影响因素及影响机理研究进展[J].硅酸盐通报,2019,38(01):110-117.DOI:10.16552/j.cnki.issn1001-1625.2019.01.019.
[2]POWERS T C.The mechanisms of frost action in concrete (Durability of Concrete,SP-8)[R].Detroit:ACI, 1965, 42~47.
[3]LITVAN G G.Frost action in cement in the presence ofdeicers[A].Proceedings of 6th International Congress onthe Chemistry of Cement[C].Moscow:[sn], 1974,2:145~152.
[4] 杨健辉,李潇雅,叶亚齐,等.全轻纤维混凝土的SHPB 冲击强度与耗能效应[J].振动与冲击,2020, 39(02):148-153+177.DOI:10.13465/j.cnki.jvs.2020.02.021.
[5] 聂良学,许金余,刘远飞,等.硫酸盐环境下混凝土强度变化规律及微观结构分析[J].振动与冲击,2016, 35(20): 203-208.DOI:10.13465/j.cnki.jvs.2016.20.033.
[6]HEKAL E E,KISHAR E,MOSTAFA H.Magnesium sulfate att-ack on hardened blended cement pastes under different circu-mstances[J].Cement and Concrete
Research, 2002, 32(9): 1421-1427.
[7] 李胜林,刘殿书,李祥龙,等.Ф75mm 分离式霍普金森压杆试件长度效应的试验研究[J].中国矿业大学学报,2010, 39(01): 93-97.
[8]LU F, LIN Y, WANG X, et al. A theoretical analysis about the influence of interfacial friction in SHPB tests[J].International Journal of Impact Engineering, 2015, 79: 95–101.
[9] 黄雄,谭焕成,刘璐璐,等.编织角和承载方向对三维四向编织复合材料动态压缩性能的影响[J]. 复合材料学报,2018, 35(04): 823-833. DOI:10.13801/j.cnki.
fhclxb.20170720.001.
[10]Gao J,Yu Z,Song L,et al.Durability of concrete exposed to sulfate- attack under flexural loading and drying-wetting cycles[J].Construction and Building Materials, 2013, 39(2): 33-38.
[11] 宁建国,任会兰著.钢筋混凝土的动态本构关系[M].北京: 北京理工大学出版社,2018.12.
[12] 罗银剑,李秀地,蔡涛,等.ECC 冲击压缩力学特性及耗能机制的试验研究[J].振动与冲击,2023, 42(04): 19-27+64.DOI:10.13465/j.cnki.jvs.2023.04.003.
[13] 谢磊,李庆华,徐世烺.纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报,2021, 38(09): 3086-3100. DOI:10.13801/j.cnki.
fhclxb.20201204.001.
[14]MANOLS G D,GAREIS P J,TSONOS A D,et al.Dynamic properties of polypropylene fiber-reinforced concrete slabs[J].Cement and Concrete Composites, 1997, 19(4): 341-349.
[15]HOU X M, CAO S J, ZHENG W Z, et al. Experimental study on dynamic compressive properties of fiber-reinforced reactive- powder concrete at high strain
rates[J].Engineering Structures, 2018, 169: 119-130.

Share
Back to top