ARTICLE
20 November 2025

组学技术在真菌学中的应用

克 卢1
Show Less
1 福建师范大学 生命科学学院, 中国
MRP 2025 , 3(11), 32–34; https://doi.org/10.61369/MRP.2025110010
© 2025 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

真菌在不同生态系统中发挥着多种作用,真菌的精确鉴定在对真菌的利用方面具有重要意义。历史上,真菌常常是根据形态特征来鉴定的,这种分类方式具有很多的局限性。随着高通量测序和基因组学的发展,可以更好的对真菌进行鉴定。本文讨论了多种组学技术在真菌应用中的重要性,蛋白质组学、转录组学、代谢组学等组学的应用加深了对真菌的理解。这些先进技术对于进一步了解真菌对食品安全和安全的影响、真菌次生代谢物、抗真菌药物和耐药性等领域十分重要。

Keywords
真菌
高通量测序
组学技术
References

 [1] Hyde, K. D. et al. Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel[J]. Fungal Divers. 93, 215–239 (2018).
 [2] 冀柳欣, 胡又佳. 丝状真菌蛋白质组学研究进展[J]. 微生物学通报 1804–1811 doi:10.13344/j.microbiol.china.170838.
 [3] Nowrousian, M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi[J]. Microbiol. Mol. Biol. Rev. 86, e00104-22 (2022).
 [4] 杨霞 , 吴柳燕, 赵玉雪, 等. 代谢组学在植物与病原真菌相互作用研究中的应用[J]. 贵州林业科技 77–81 doi:10.16709/j.cnki.gzlykj.20240914.002.
 [5] 吕梦雪, 方雨璇, 孙一翡, 等. 多组学分析技术在灵芝属真菌遗传发育与生物功能研究中的应用[J]. 菌物研究 (2025) doi:10.13341/j.jfr.2025.1859.
 [6] 毛欣颖, 丁宇, 王越, 等. 西洋参幼苗内生真菌多样性及其与代谢之间的关联性分析[J]. 微生物学通报 3124–3144 doi:10.13344/j.microbiol.china.241055.
 [7] Ball, B., Langille, M. & Geddes-McAlister, J. Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance[J]. mBio 11, e01020-20 (2020).
 [8] 刘宁 , 金保伟, 胡景辉, 等. 真菌分类中分子生物学方法的原理及其应用[J]. 华北农学报 76–80.
 [9] Vandepol, N. et al. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics[J]. Fungal Divers. 104, 267–289 (2020).
 [10] Barker, K. R. et al. A Practical Workflow for the Identification of Aspergillus, Fusarium, Mucorales by MALDI-TOF MS: Database, Medium, and Incubation Optimization[J]. Clin. Microbiol. 60, e01032-22 (2022).
 [11] 谢占玲 , 王欢, 赵鹏, 等. 分离自青海湖可培养耐盐真菌的多样性研究[J]. 菌物学报 187–195 doi:10.13346/j.mycosystema.2012.02.011.
 [12] Vargas-Gastélum, L. & Riquelme, M. The Mycobiota of the Deep Sea: What Omics Can Offer[J]. Life 10, 292 (2020).
 [13] Janick, J. HORTICULTURAL PLANT BREEDING: PAST ACCOMPLISHMENTS, FUTURE DIRECTIONS[J]. Acta Hortic. 61–65 (2005) doi:10.17660/ActaHortic.2005.694.6.
 [14] Valverde, M. E., Hernández-Pérez, T. & Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life[J]. Int. J. Microbiol. 2015, 1–14 (2015).
 [15] Cao, L. et al. Application of omics technology in the research on edible fungi[J]. Curr. Res. Food Sci. 6, 100430 (2023).
 [16] 陈锡玮 , 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学 571–592.
 [17] 刘扬 , 石凤翎, 王桂花. 卷边桩菇内生真菌天然红色素的分离鉴定[J]. 食品研究与开发, 17–21.
 [18] Poorniammal, R., Prabhu, S., Dufossé, L. & Kannan, J. Safety Evaluation of Fungal Pigments for Food Applications[J]. Fungi 7, 692 (2021).
 [19] 刘畅 . 真菌毒素污染对粮食原粮安全性的风险分析及防控措施[J]. 现代食品,127–129 doi:10.16736/j.cnki.cn41-1434/ts.2025.14.039.
 [20] Jayaratne, W. M. S. C. et al. Detection and quantification of Aflatoxin B1 in corn and corn-grown soils in the district of Anuradhapura, Sri Lanka[J]. Heliyon 6, e05319 (2020).
 [21] Eshelli, M., Qader, M., Jambi, E., Hursthouse, A. & Rateb, M. Current Status and Future Opportunities of Omics Tools in Mycotoxin Research[J]. Toxins 10, 433 (2018).
 [22] 胡海玲 , 马钰雯, 耿赫阳, 等. 丛枝菌根真菌AMF提高植物抗逆性的组学技术研究进展[J]. 植物营养与肥料学报 1928–1936.
 [23] Soni, P. et al. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut (Arachis hypogaea L.) and Maize (Zea mays L.)[J]. Front. Microbiol. 11, 227 (2020).
 [24] 范德佳 , 陈士强, 王建华, 等. 利用CRISPR/Cas技术改良作物抗病性的研究进展[J]. 江苏农业学报 1312–1321.
 [25] Canzler, S. et al. Prospects and challenges of multi-omics data integration in toxicology[J]. Arch. Toxicol. 94, 371–388 (2020).

Share
Back to top