Volume 3,Issue 9
METTL3调控致癌发生的机制及其抑制剂研发进展
N6-甲基腺嘌呤(m6A)是真核生物信使RNA(mRNA)中最普遍的一种内部化学修饰。该修饰过程由三类功能蛋白共同调控:甲基转移酶(writer)、去甲基化酶(eraser)和甲基化阅读蛋白(reader)。其中,甲基转移酶样蛋白3(METTL3)是催化m6A形成的关键酶,也是m6A甲基转移酶复合体的核心催化亚基。METTL3在多种恶性肿瘤中异常高表达,通过调控致癌信号通路成为潜在的抗癌新靶点。本综述主要阐述了METTL3通过m6A依赖性机制和非m6A依赖性机制(如PI3K/AKT/mTOR、JAK/STAT等信号通路关键基因的翻译与稳定性)来促进癌细胞的存活、增殖和侵袭,从而发挥致癌作用,以及总结了目前关于靶向METTL3的小分子抑制剂和蛋白降解剂的最新研发进展与抗肿瘤效果。最后,本文分析了靶向METTL3在临床转化中所面临的关键挑战,并展望了其未来发展方向,旨在为基于表观转录组调控的新型药物研发提供理论参考。
[1]BOKAR J A, SHAMBAUGH M E, POLAYES D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase [J]. Rna, 1997, 3(11): 1233-47.
[2]SUN T, WU R, MING L. The role of m6A RNA methylation in cancer [J]. Biomed Pharmacother, 2019, 112: 108613.
[3]ŚLEDŹ P, JINEK M. Structural insights into the molecular mechanism of the m(6)A writer complex [J]. Elife, 2016, 5.
[4]LIU X, HE H, ZHANG F, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling [J]. Cell Death Dis, 2022, 13(5): 483.
[5]BI X, LV X, LIU D, et al. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway [J]. Cancer Gene Therapy, 2021, 28(3): 335-49.
[6]XIONG J, HE J, ZHU J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells [J]. Mol Cell, 2022, 82(9): 1660-77.e10.
[7]SUN Y, GONG W, ZHANG S. METTL3 promotes colorectal cancer progression through activating JAK1/STAT3 signaling pathway [J]. Cell Death Dis, 2023, 14(11): 765.
[8]YANG Z, JIANG X, LI D, et al. HBXIP promotes gastric cancer via METTL3-mediated MYC mRNA m6A modification [J]. Aging (Albany NY), 2020, 12(24): 24967-82.
[9]HAN J, WANG J Z, YANG X, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner [J]. Mol Cancer, 2019, 18(1): 110.
[10]CHEN W, ZHANG J, MA W, et al. METTL3-Mediated m6A Modification Regulates the Polycomb Repressive Complex 1 Components BMI1 and RNF2 in Hepatocellular Carcinoma Cells [J]. Mol Cancer Res, 2025, 23(3): 190-201.
[11]WU D, SPENCER C B, ORTOGA L, et al. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury [J]. Redox Biol, 2024, 74: 103194.
[12]WEI X, HUO Y, PI J, et al. METTL3 preferentially enhances non-m(6)A translation of epigenetic factors and promotes tumourigenesis [J]. Nat Cell Biol, 2022, 24(8): 1278-90.
[13]YANKOVA E, BLACKABY W, ALBERTELLA M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia [J]. Nature, 2021, 593(7860): 597601.
[14]JIAO C Q, HU C, SUN M H, et al. Targeting METTL3 mitigates venetoclax resistance via proteasome-mediated modulation of MCL1 in acute myeloid leukemia [J]. Cell Death Dis, 2025, 16(1): 233.
[15]TANG H, ZHANG R, ZHANG A. Small-Molecule Inhibitors Targeting RNA m(6)A Modifiers for Cancer Therapeutics: Latest Advances and Future Perspectives [J]. J Med Chem, 2025, 68(17): 18114-42.
[16]WANG J N, WANG F, KE J, et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms [J]. Sci Transl Med, 2022, 14(640): eabk2709.
[17]MOROZ-OMORI E V, HUANG D, KUMAR BEDI R, et al. METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes [J]. ChemMedChem, 2021, 16(19): 3035-43.
[18]DOLBOIS A, BEDI R K, BOCHENKOVA E, et al. 1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors [J]. J Med Chem, 2021, 64(17): 12738-60.
[19]DU W, HUANG Y, CHEN X, et al. Discovery of a PROTAC degrader for METTL3-METTL14 complex [J]. Cell Chem Biol, 2024, 31(1): 177-83.e17.
[20]NAR R, WU Z, LI Y, et al. Targeting METTL3 protein by proteolysis-targeting chimeras: A novel therapeutic approach for acute myeloid leukemia [J]. Genes Dis, 2025, 12(4): 101452.