Volume 2,Issue 9
沼液改性小球藻强化Cd2+的生物吸附性能研究
为了探究微藻废水培养对微藻吸附重金属离子的影响,首先利用傅里叶红外光谱仪(FTIR)对比分析BG-11培养基和沼液培养收获的小球藻(Chlorella vulgaris)生物组分差异,然后再开展不同培养组小球藻对Cd2+的吸附动力学研究。结果表明,沼液对小球藻有较理想的培养效果;两组小球藻均能够为重金属的生物吸附提供关键的官能团;基于官能团谱峰强度的差异,在达到吸附平衡时两组小球藻表现出差异的Cd2+吸附率,其中沼液组吸附率为96 %,BG-11培养基组吸附率仅为78 %;利用动力学模型模拟可知小球藻吸附Cd2+过程中影响吸附速率的主要因素是化学吸附。总之沼液培养带来的小球藻生物组分改变,提高小球藻的Cd2+生物吸附能力。
[1] LU H-L, LI K-W, NKOH J N, et al. Effects of pH variations caused by redox reactions and pH buffering capacity on Cd(II) speciation in paddy soils during submerging/ draining alternation[J]. Ecotoxicology and environmental safety, 2022, 234: 113409.
[2]HU Y, CHENG H, TAO S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review[J]. Environment International, 2016, 92-93: 515-32.
[3]ELEHINAFE F B, MAMUDU A O, OKEDERE O B, et al. Risk assessment of chromium and cadmium emissions from the consumption of premium motor spirit (PMS) and automotive gas oil (AGO) in Nigeria[J]. Heliyon, 2020, 6(11): e05301.
[4]GARDEA-TORRESDEY J L, BECKER-HAPAK M K, HOSEA J M, et al. Effect of chemical modification of algal carboxyl groups on metal ion binding[J]. Environscitechnology, 1990, 24(9): 1372-8.
[5]MARJAKANGAS J M, CHEN C-Y, LAKANIEMI A-M, et al. Simultaneous nutrient removal and lipid production with Chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater[J]. Biochemical Engineering Journal, 2015, 103: 177-84.
[6]RASHIDI B, DECHESNE A, RYDAHL M G, et al. Neochloris oleoabundans cell walls have an altered composition when cultivated under different growing conditions[J]. Algal Research, 2019, 40: 101482.
[7]JIANG X, ZHANG S, YIN X, et al. Contrasting effects of a novel biochar-microalgae complex on arsenic and mercury removal[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115144.
[8]KOMY Z R, SHAKER A M, HEGGY S E M, et al. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid[J]. Chemosphere, 2014, 99: 117-24.
[9]LEONG Y K, CHANG J-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms[J]. Bioresource Technology, 2020, 303: 122886.
[10]LUO X, YU L, WANG C, et al. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions[J]. Chemosphere, 2017, 169: 609-17.
[11]PAVITHRA K G, KUMAR P S, JAIKUMAR V, et al. Microalgae for biofuel production and removal of heavy metals: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 1905-23.
[12]YEHEYO H A, EALIAS A M, GEORGE G, et al. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal[J]. Journal of Environmental Management, 2024, 363: 121409.