陆上风力发电机基础疲劳损伤全过程分析
本文旨在研究陆上风力发电机基础的疲劳损伤演化全过程。首先,引入了一种基于竞争机制的混凝土疲劳损伤本构模型,以准确反映混凝土基础的疲劳特征。在此基础上,通过将本构模型与基于循环跳跃的疲劳加速算法相结合,提出了一种高效稳健的风力发电机基础疲劳损伤全过程分析方法。最后,以广东乳源风电场中一台2.0MW 陆上风力发电机基础为例,进行了风力发电机基础疲劳全过程分析,获得了风力发电机基础在全寿命期间的疲劳损伤演化规律。研究结果证实,本文提出的方法在工程应用中具有较高的实用性和指导价值。
[1] 周新刚,孔会.某风机钢筋混凝土基础破坏实例及有限元分析[J].中国电力,2014, 47(02): 116-119.
[2] S. Bisoi, S. Haldar. Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction[J].Soil Dynamics and Earthquake Engineering, 2014, 63: 19-35.
[3] 霍涛.风速风向对风机塔筒结构动力响应和疲劳寿命的影响[J].建筑结构,2020,50(18):8.
[4] 李炜,李华军,郑永明,等.海上风电基础结构疲劳寿命分析[J].水利水运工程学报,2011, 3: 70-76.
[5] 汪宏伟.采用环梁加固风机基础的有限元分析[J].可再生能源,2016, 34(04):558-562.
[6] J. Velarde, C. Kramhøft, J.D. Sørensen. Global sensitivity analysis of offshore wind turbine foundation fatigue loads[J].Renewable Energy, 2019, 140: 177-189.
[7] J. Liang, X. Ren, J. Li. A competitive mechanism driven damage-plasticity model for fatigue behavior of concrete[J].International Journal of Damage Mechanics,2016, 25: 377-399.
[8] J. Wu, J. Li, R. Faria. An energy release rate-based plastic-damage model for concrete[J].International Journal of Solids and Structures, 2006, 43: 583-612.
[9] J.Y. Cognard, P. Ladevèze. A large time increment approach for cyclic viscoplasticity[J].International Journal of Plasticity, 1993, 9: 141-157.
[10] J. Liang, Z. Ding, J. Li. Analytical method for fatigue process of concrete structures[J].Journal of Building Structures, 2017, 38: 149-157.