Volume 3,Issue 3
Fall 2025
激光熔覆Fe18Co24Cr20Ni23Mo7Nb3W1Si2C2复合涂层组织形貌及耐蚀性能研究
针对海洋工程装备因长期腐蚀致使其关键零部件表面受损严重的问题,本研究基于激光熔覆技术,探究了激光功率和离焦高度对激光熔覆Fe18Co24Cr20Ni23Mo7Nb3W1Si2C2复合涂层微观组织与腐蚀行为的影响规律。结果表明,激光熔覆涂层呈现出典型的树枝晶结构,主要由FCC结构的(Co, Cr, Fe, Ni)相、共晶碳化物相及相组成,分别对应了涂层截面微观组织中的枝晶组织、枝晶间组织和析出相。研究获得了最优激光熔覆制备工艺参数:激光功率为1000 W,离焦高度为3 mm,扫描速度为10 mm/min,送粉率为15 g/min,气流量为15 L/min,搭接率为50 %。在最佳工艺下制备的涂层致密均匀。电化学分析结果表明,涂层的耐腐蚀性能优异,主要归因于涂层表面的钝化膜具有高稳定性、高阻抗、对溶液中阴离子的敏感程度越低以及腐蚀反应速率低等综合优势。
[1] Prameela S E, Pollock T M, Raabe D, et al. Materials for extreme environments[J].Nature Reviews Materials, 2023, 8(2): 81-88.
[2] Zhang Y, Yin X Y, Wang J Z, et al. Influence of microstructure evolution on tribocorrosion of 304SS in artificial seawater[J], Corrosion Science, 2014, 88: 423-433.
[3] Li Y T, Wang K M, Fu H G, et al. Microstructure and wear resistance of in-situ TiC reinforced AlCoCrFeNi-based coatings by laser cladding[J], Applied Surface
Science, 2022, 585: 152703.
[4] Kumar D, Recent advances in tribology of high entropy alloys: A critical review[J], Progress in Materials Science, 20203, 136: 101106.
[5] Li Y T, Fu H G, Wang K M, et al. Effect of Mo addition on microstructure and wear resistance of laser clad AlCoCrFeNi-TiC composite coatings[J], Applied Surface
Science, 2023, 623: 157071.
[6] Hao X H, Liu H X, Zhang X W, et al. Microstructure and wear resistance of in-situ TiN/(Nb, Ti)5Si3 reinforced MoNbTaWTi-based refractory high entropy alloy
composite coatings by laser cladding[J], Applied Surface Science, 2023, 626: 157240.
[7] Zhu L, Xue P, Lan Q,et al. Recent research and development status of laser cladding: A review[J], Optics and Laser Technology, 2021, 138: 1069115.
[8] Zhuang D D, Tao W W, Du B, et al. Microstructure and properties of TiC-enhanced CrMnFeCoNi high-entropy alloy coatings prepared by laser cladding[J], Tribology
International, 2023, 180: 108246.
[9] Ma G L, Cui H Z, Jiang D, et al. The evolution of multi and hierarchical carbides and their collaborative wear-resisting effects in CoCrNi/WC composite coatings via laser
cladding[J], Materials Today Communications, 2022, 30: 103223.
[10] Shang X, Zhang C, Xv T, et al. Synergistic effect of carbide and amorphous phase on mechanical property and corrosion resistance of laser-clad Fe-based amorphous
coatings[J], Materials Chemistry and Physics, 2021, 263: 124407.
[11] Zhou J L, Cheng Y H, Wan Y X,et al. Strengthening by Ti, Nb, and Zr doping on microstructure, mechanical, tribological, and corrosion properties of CoCrFeNi highentropy
alloys[J], Journal of Alloys and Compounds, 2024, 984: 173819.
[12] Dai J, Feng H, Li H B, et al. Insights into the mechanism of Mo protecting CoCrFeNi HEA from pitting corrosion-A quantitative modelling study on passivation and
repassivation processes[J], Journal of Materials Science & Technology, 2024, 182: 152-164.
[13] Zhou J Y, Zhang J Y, Zhang F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J], Ceramics International, 2018, 44(17): 22014-22018.
[14] Niu Z, Xu J, Wang T, et al. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x = 0, 0.2, 0.5) high entropy alloys[J], Intermetallics,
2019, 112: 106550.
[15] Gao J, Song D Y, Feng J W, Effect of Laser Power on Microstructure and Properties of CBN Coating by Laser Cladding on TC11 Titanium Alloy[J], Applied Mechanics
and Materials, 2014, 598: 94-97.
[16] Hao E K, Liu X, An Y L, et al. The coupling effect of immersion corrosion and cavitation erosion of NiCoCrAlYTa coatings in artificial seawater[J], Corrosion Science,
2020, 169: 108635.
[17] Guo W M, Zhang H L, Zhao S, et al. Corrosion Behavior of the CoNiCrAlY-Al2O3 Composite Coating Based on Core-Shell Structured Powder Design[J], Materials,
2021,14(22): 7093.
[18] Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in HSO4 and NaOH solutions[J], Corrosion
Science, 2020, 177: 108973.
[19] Gong X J, Cui Y J, Wei D X, et al. Building direction dependence of corrosion resistance property of Ti-6Al-4V alloy fabricated by electron beam melting[J], Corrosion
Science, 2017, 127: 101-109.