风浪流不共线对半潜式风机平台水动力性能的影响研究
海上浮式风机是在风、浪、流的共同影响下运行的,这些载荷往往作用于不同的方向。现有研究通常只考虑风浪流共线情况,为此本文旨在研究风浪流不共线对浮式风机平台动态响应的影响。以OC4-DeepCwind半潜式平台为研究对象,首先将模拟结果与FAST结果进行了对比分析,验证了数值模型的正确性;然后讨论了风浪流单个环境载荷与另外两个载荷呈0°、30°、60°和90°夹角时浮式风机平台的动态响应的变化。结果表明:风浪流共线时的纵荡运动响应最大;风浪流不共线对平台纵荡运动响应的影响较大,对垂荡运动响应的影响很小;风向角变化对平台运动的影响大于浪向角和流向角。
[1] XU S, XUE Y J, ZHAO W W, et al. A Review of High-Fidelity Computational Fluid Dynamics for Floating Offshore Wind Turbines[J].Journal of Marine Science and Engineering, 2022, 10(10): 1357.
[2] EDWARDS E C, HOLCOMBE A, BROWN S, et al. Trends in floating offshore wind platforms: A review of early-stage devices[J].Renewable and Sustainable Energy Reviews 2024, 193: 114271.
[3] FISCHER T, RAINEY P, BOSSANYI E, et al. Study on control concepts suitable for mitigation of loads from misaligned wind and waves on offshore wind turbines supported on monopiles[J].2011, 35(5): 561-573.
[4] LE C H, ZHANG J, DING H Y, et al. Preliminary Design of a Submerged Support Structure for Floating Wind Turbines[J].Journal of Ocean University of China, 2020, 19(6): 1265-1282.
[5] LYU G, ZHANG H, LI J. Effects of incident wind/wave directions on dynamic response of a SPAR-type floating offshore wind turbine system[J].Acta Mechanica Sinica, 2019, 35: 954-963.
[6] 李修赫,朱才朝,谭建军,等.风浪不共线对浮式风机基础动态特性影响研究[J].振动与冲击,2020, 39(13): 230-237.
[7] JIA W Z, YUE M N, MIAO W P, et al. Dynamic analysis of a 5 MW Barge-type FOWT with two-mooring failure of wind-wave misalignment scenarios[J].Ocean Engineering, 2023, 285: 115456.
[8] FITZGERALD B, MCAULIFFE J, BAISTHAKUR S, et al. Enhancing the reliability of floating offshore wind turbine towers subjected to misaligned wind-wave loading using tuned mass damper inerters (TMDIs)[J].Renewable Energy, 2023, 211: 522-538.
[9] CAO G W, CHEN Z X, WANG C L, et al. Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations[J].Ocean Engineering, 2020, 217: 108155.
[10] BARJ L, JONKMAN J M, ROBERTSON A, et al. Wind/wave misalignment in the loads analysis of a floating offshore wind turbine[C]// Proceedings of 32nd ASME wind energy symposium. USA, 2014.
[11] YOSHIDA S, UTSUNOMIA T. Effects of Wave- Wind Directional Misalignment on Dynamic Characteristics and Fatigue Loads of Spar- type Floating Offshore Downwind
Turbine[C]// Proceedings of Japan society of Mechanical Engineering (JSME) Fluids Engineering Conference. Japan, 2010.
[12] NIRANJAN R, RAMISETTI S B. Insights from detailed numerical investigation of 15 MW offshore semi-submersible wind turbine using aero-hydro-servo-elastic code [J].Ocean Engineering, 2022, 251: 111024.
[13] LI X, ZHU C, FAN Z, et al. Effects of the yaw error and the wind-wave misalignment on the dynamic characteristics of the floating offshore wind turbine[J].Ocean Engineering, 2020, 199: 106960.
[14] VAN DER MEULEN M B, ASHURI T, VAN BUSSEL G J, et al. Influence of nonlinear irregular waves on the fatigue loads of an offshore wind turbine[C]// Proceedings
of The science of making torque from wind. Germany, 2012.
[15] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase II of OC4[R]: National Renewable Energy Lab.(NREL), Golden, CO (United States), 2014.
[16] ROBERTSON A, JONKMAN J, Vorpahl F, et al. .Offshore code comparison collaboration continuation within IEA wind task 30: Phase II results regarding a floating semisubmersible wind system[C]// Proceedings of The International Conference on Offshore Mechanics and Arctic Engineering. USA, 2014.