掠翼型振荡水翼的水动力特性分析
在振荡水翼研究领域,目前对于水翼的选择仍以传统的NACA 类翼型为主。为探索其他翼型结构水动力相关特性以进一步提高水翼的适用范围。通过仿生学的方法以鱼尾鳍的后掠结构为基础,建立了前缘后掠型、后缘前掠型以及后掠翼和前掠翼的振荡水翼的运动模型,并描述了相关的数学表达式和参数定义。通过数值模拟方法,分析了掠角对于掠翼型振荡水翼水动力性能的影响。结果显示,掠角主要影响水翼的升阻力系数和力矩系数,且其影响随角度变化并不呈完全相关关系。
[1]Armaroli N, Balzani V. Towards an electricity-powered world [J].Energy & Environmental Science, 2011, 4(9): 3193-222.
[2]Schiermeier Q, Tollefson J, Scully T, et al. Electricity without carbon [J].Nature, 2008, 454(7206): 816-23.
[3]YOUNG J, LAI J C S, PLATZER M F. A review of progress and challenges in flapping foil power generation (vol 67, pg 2, 2014) [J].Progress in Aerospace Sciences,2014, 67(2014): 1-28.
[4]ZHU Q. Energy harvesting by a purely passive flapping foil from shear flows [J].Journal of Fluids and Structures, 2012, 34(2012): 157-169.
[5]LIU Z Q, WANG Y Z, HUA X G. Numerical studies and proposal of design equations on cylindrical oscillating wave surge converters under regular waves using SPH [J].Energy Conversion and Management, 2020, 203: 112242.
[6]ZHANG D, MA X, SI Y, et al. Effect of doubly fed induction GeneratorTidal current turbines on stability of a distribution grid under unbalanced voltage conditions [J].Energies, 2017, 10(2): 212.
[7]KINSEY T, DUMAS G. Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils [J].Journal of Fluids Engineering, 2012,134(2): 021104.
[8]PIZIALI R. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall [R], 1994.
[9]LI D Y, LIU N S, LU X Y, et al. Force characteristics and vortex shedding of a pitching foil in shear flows [J].Journal of Hydrodynamics, 2005, 17(1): 27-33.
[10]SUN G, WANG Y, XIE Y D, et al. Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil [J].Energy, 2021, 225: 120206.
[11]FRIEDLAENDER A S, HAZEN E L, NOWACEK D P, et al. Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution [J].Marine Ecology Progress Series, 2009, 395: 91-100.
[12]HAZEN E L, FRIEDLAENDER A S, THOMPSON M A, et al. Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae [J].Marine Ecology Progress Series, 2009, 395: 75-89.
[13]FISH F E, WEBER P W, MURRAY M M, et al. The tubercles on humpback whales’ flippers: application of bio-inspired technology [Z].Oxford University Press. 2011
[14]EDEL R, WINN H. Observations on underwater locomotion and flipper movement of the humpback whale Megaptera novaeangliae [J].Marine Biology, 1978, 48: 279-287.
[15]FISH F E. The myth and reality of Gray’s paradox: implication of dolphin drag reduction for technology [J].Bioinspiration & Biomimetics, 2006, 1(2): R17.
[16]FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper [J].Journal of Morphology, 1995, 225(1): 51-60.