Volume 2,Issue 5
Fall 2025
燃煤机组气力输灰系统自动控制逻辑优化
气力输灰系统广泛应用于国内外各大型火电厂的输灰系统,在实际运行中,由于传统的物位计信号的误差,很多除灰
系统只能选择使用时间装料的方式来完成输灰工作。至今这种输送方式仍没有形成解决用气量浪费严重,阀门开关频
率过快,稀相输送对管道及阀门的磨损等问题,严重缩短除灰系统的使用寿命。本文介绍了除灰系统的工作原理及控
制方法,详细分析了除灰系统效率低的原因,根据分析结果提出了仓泵料位测量及控制逻辑优化方案,优化后的运行
结果表明,除灰系统的除灰效率得到了很大的提高。
[1]Smith, J. R., & Brown, T. L. (2020). Advances in Pneumatic Conveying Systems. Journal of Power Engineering, 45(3), 112-125.
[2]Zhang, H., et al. (2019). Optimization of Control Logic for Ash Handling in Thermal Power Plants. Energy and Environment, 34(2), 78-89.
[3]Wang, L., & Li, X. (2018). Continuous Level Measurement Technologies for Industrial Applications. Automation in Industry, 22(4), 56-67.
[4]Johnson, P. (2017). Wear Reduction in Pneumatic Conveying Pipelines. Mechanical Engineering Journal, 12(1), 45-53.
[5]Chen, G., et al. (2016). Energy Efficiency Improvements in Coal-Fired Power Plants. Sustainable Energy Reviews, 50, 200-210.
[6]Liu, Y. (2015). Automation and Control Systems for Ash Handling. Power Plant Technology, 28(3), 34-42.
[7]Anderson, R. (2014). Nuclear Level Gauges for Bulk Material Measurement. Nuclear Engineering, 19(5), 88-97.
[8]Lee, S., & Park, M. (2013). Valve Optimization in Pneumatic Systems. Fluid Dynamics, 40(6), 123-135.
[9]White, D. (2012). Maintenance Strategies for Pneumatic Conveying Systems. Industrial Maintenance, 15(4), 67-74.
[10]Taylor, K. (2011). Environmental Impact of Coal Ash Disposal. Environmental Science, 25(7), 101-110.