Art and Design / CDCST / Volume 1 / Issue 2 / DOI: 10.61369/CDCST.7998
Cite this article
4
Download
13
Citations
53
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

生物合成法制备2-O-α-甘油葡萄糖苷的研究进展

海畅 徐1,2 振东 刘1,2 棱 蒋1,2 浩 梁1,2
Show Less
1 1. 北京化工大学生命科学与技术学院, 1. 北京化工大学生命科学与技术学院
2 2.. 北京化工大学化工资源有效利用国家重点实验室, 2.. 北京化工大学化工资源有效利用国家重点实验室
CDCST 2024 , 1(2), 76–82;
Published: 25 November 2024
© 2024 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

2-O-α-甘油葡萄糖苷 (2-O-α-glucosyl glycerol, 2-O-α-GG) 是一种来源于蓝藻的天然葡萄糖苷类化合物,在皮肤保湿、抗炎舒敏等方面表现出优良性能,已被广泛应用于面膜、面霜、浴液和化妆水等多种化妆品和个人护理产品中。生物合成法制备2-O-α-甘油葡萄糖苷具有环境友好性、操作方式简单、反应条件温和等优势。文章主要从酶催化法和全细胞催化法两个方面综述了2-O-α-甘油葡萄糖苷的生物合成研究现状,旨在为通过生物法实现2-O-α- 甘油葡萄糖苷的工业化生产提供理论依据与参考。

Keywords
2-O-α- 甘油葡萄糖苷
生物合成法
酶催化法
全细胞催化法
References

[1] MACKAY M A, NORTON R S, BOROWITZKA L J. Marine bluegreen algae have a unique osmoregulatory system [J]. Marine Biology, 1983, 73: 301-307. 
[2] TAKENAKA F, UCHIYAMA H, T I. Identification of α-dglucosylglycerol in sake [J]. Biosci Biotechnol Biochem, 2000, 64(2) : 378-385. 
[3] MIYUKI K, EIYOYASU M, YOSHIKO T, et al. Lilioside a and b,two new glycerol glucosides isolated from lilium longiflorum thunb. [J]. Tetrahedron Letters, 1974, 45: 3937-3940. 
[4] MIYUKI KANEDA, KYOKO KOBAYASHI, KAYO NISHIDA, et al. Liliosides d and e, two glycerol glucosides from lilium japonicum [J]. Phytochemistry, 1984, 23: 4. 
[5] MIYUKI KANEDA T K M A K T. Lilioside c, a glycerol glucoside from lilium lancifolium* [J]. Phylochemistry, 1982, 21. 
[6] TA K E N A K A F, U C H I YA M A H . S y n t h e s i s o f α - dglucosylglycerol by α-glucosidase and some of its characteristics [J]. Biosci Biotechnol Biochem, 2000, 64(9) : 1821-1826. 
[7] HARADA N, ZHAO J, KURIHARA H, et al. Effects of topical application of alpha-d-glucosylglycerol on dermal levels of insulinlike growth factor-i in mice and on facial skin elasticity in humans [J]. Biosci Biotechnol Biochem, 2010, 74(4) : 759-765. 
[8] KATO J, SHIRAKAMI Y, MIZUTANI T, et al. Alpha-glucosidase inhibitor voglibose suppresses azoxymethane-induced colonic preneoplastic lesions in diabetic and obese mice [J]. Int J Mol Sci, 2020, 21(6) : 2226. 
[9] BORGES N, RAMOS A, RAVEN N D, et al. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes [J]. Extremophiles, 2002, 6(3) : 209-216. 
[10] HIROFUMI NAKANO, TAR0 KISO, KATSUYUKI OKAMOTO, et al. Synthesis of glycosyl glycerol by cyclodextrin glucanotransferases [J]. Journal of BIOSCIENCE AND BIOENGINEERING, 2003, 95(6) : 583-588. 
[11] JEONG J W, SEO D H, JUNG J H, et al. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from methylobacillus flagellatus kt [J]. Appl Biochem Biotechnol, 2014, 173(4) : 904-917. 
[12] GOEDL C, SAWANGWAN T, MUELLER M, et al. A highyielding biocatalytic process for the production of 2-o-(alphad- glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient [J]. Angew Chem Int Ed Engl, 2008, 47(52) : 10086-10089. 
[13] NIHIRA T, SAITO Y, OHTSUBO K, et al. 2-o-alpha-dglucosylglycerol phosphorylase from bacillus selenitireducens mls10 possessing hydrolytic activity on beta-d-glucose 1-phosphate [J]. PLoS One, 2014, 9(1) : e86548. 
[14] TOUHARA K K, NIHIRA T, KITAOKA M, et al. Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-o-alphaglucosylglycerol phosphorylase [J]. J Biol Chem, 2014, 289(26) : 18067-18075. 
[15] JIANG R, YE K, FAN T, et al. [application of sucrose phosphorylase in glycosylation] [J]. Sheng Wu Gong Cheng Xue Bao, 2021, 37(1) : 112-129. 
[16] 陈献忠,杨 夏.蔗糖磷酸化酶的研究进展 [J]. 微生物学通 报,2021, 48(12) : 4904-4917. 
[17] AO J, PAN X, WANG Q, et al. Efficient whole-cell biotransformation for alpha-arbutin production through the engineering of sucrose phosphorylase combined with engineered cell modification [J]. J Agric Food Chem, 2023, 71(5) : 2438-2445. 
[18] KRUSCHITZ A, NIDETZKY B. Biocatalytic production of 2-alpha-d-glucosyl-glycerol for functional ingredient use: Integrated process design and techno-economic assessment [J]. ACS Sustain Chem Eng, 2022, 10(3) : 1246-1255. 
[19] XIA Y, LI X, YANG L, et al. Development of thermostable sucrose phosphorylase by semi-rational design for efficient biosynthesis of alpha-d-glucosylglycerol [J]. Appl Microbiol Biotechnol, 2021, 105(19) : 7309-7319. 
[20] ZHOU Y, KE F, CHEN L, et al. Enhancing regioselectivity of sucrose phosphorylase by loop engineering for glycosylation of l-ascorbic acid [J]. Appl Microbiol Biotechnol, 2022, 106(12) : 4575- 4586. 
[21] ZHOU Y, LV X, CHEN L, et al. Identification of process-related impurities and corresponding control strategy in biocatalytic production of 2-o-alpha-d-glucopyranosyl-l-ascorbic acid using sucrose phosphorylase [J]. J Agric Food Chem, 2022, 70(16) : 5066-5076. 
[22] XU H, WEI B, LIU X, et al. Robust enhancing stability and fructose tolerance of sucrose phosphorylase by immobilization on ni-nta functionalized agarose microspheres for the biosynthesis of 2-α-glucosylglycerol [J]. Biochemical Engineering Journal, 2022, 180. 
[23] LEI J, TANG K, ZHANG T, et al. Efficient production of 2-o-alpha-d-glucosyl glycerol catalyzed by an engineered sucrose phosphorylase from bifidobacterium longum [J]. Appl Biochem Biotechnol, 2022, 194(11) : 5274-5291. 
[24] FRANCEUS J, UBIPARIP Z, BEERENS K, et al. Engineering of a thermostable biocatalyst for the synthesis of 2-o-glucosylglycerol [J]. Chembiochem, 2021, 22(18) : 2777-2782. 
[25] S H U P, N I U H , Z H A N G L , e t a l . R e g i o s e l e c t i v e dechloroacetylations mediated by ammonium acetate: Practical syntheses of 2,3,4,6 ‐tetra ‐o ‐chloroacetyl ‐glycopyranoses and cinnamoyl glucose esters [J]. ChemistrySelect, 2020, 5(21) : 6360- 6364. 
[26] ASHKAN Z, HEMMATI R, HOMAEI A, et al. Immobilization of enzymes on nanoinorganic support materials: An update [J]. Int J Biol Macromol, 2021, 168: 708-721. 
[27] WEI B, XU H, CHENG L, et al. Highly selective entrapment of his-tagged enzymes on superparamagnetic zirconium-based mofs with robust renewability to enhance ph and thermal stability [J]. ACS Biomater Sci Eng, 2021, 7(8) : 3727-3736. 
[28] YUSHKOVA E D, NAZAROVA E A, MATYUHINA A V, et al. Application of immobilized enzymes in food industry [J]. J Agric Food Chem, 2019, 67(42) : 11553-11567. 
[29] ARCUS V L, VAN DER KAMP M W, PUDNEY C R, et al. Enzyme evolution and the temperature dependence of enzyme catalysis [J]. Curr Opin Struct Biol, 2020, 65: 96-101. 
[30] CERDOBBEL A, DESMET T, DE WINTER K, et al. Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization [J]. J Biotechnol, 2010, 150(1) : 125-130. 
[31] DE WINTER K, SOETAERT W, DESMET T. An imprinted crosslinked enzyme aggregate (iclea) of sucrose phosphorylase: Combining improved stability with altered specificity [J]. Int J Mol Sci, 2012, 13(9) : 11333-11342. 
[32] CERDOBBEL A, DE WINTER K, DESMET T, et al. Sucrose phosphorylase as cross-linked enzyme aggregate: Improved thermal stability for industrial applications [J]. Biotechnol J, 2010, 5(11) : 1192-1197. 
[33] BOLIVAR J M, LULEY-GOEDL C, LEITNER E, et al. Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format [J]. J Biotechnol, 2017, 257: 131-138. 
[34] XU H, LIANG H. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance [J]. Int J Biol Macromol, 2022, 220: 124-134. 
[35] YANG W, SUN H, CUI Z, et al. Spatially sequential coimmobilization of phosphorylases in tiny environments and its application in the synthesis of glucosyl glycerol [J]. International Journal of Biological Macromolecules, 2024, 279. 
[36] SCHWAIGER K N, CSERJAN-PUSCHMANN M, STRIEDNER G, et al. Whole cell-based catalyst for enzymatic production of the osmolyte 2-o-alpha-glucosylglycerol [J]. Microb Cell Fact, 2021, 20(1) : 79. 
[37] ZHOU J, JIANG R, SHI Y, et al. Sucrose phosphorylase from lactobacillus reuteri: Characterization and application of enzyme for production of 2-o-alpha-d-glucopyranosyl glycerol [J]. Int J Biol Macromol, 2022, 209(Pt A) : 376-384. 
[38] DUAN P, YOU J, XU M, et al. whole-cell biosynthesis of 2-o-alpha-d-glu-copyranosyl-sn-glycerol by recombinant bacillus subtilis [J]. Sheng Wu Gong Cheng Xue Bao, 2020, 36(9) : 1918-1928. 
[39] DUAN P, LONG M, ZHANG X, et al. Efficient 2-o-alphad- glucopyranosyl-sn-glycerol production by single whole-cell biotransformation through combined engineering and expression regulation with novel sucrose phosphorylase from leuconostoc mesenteroides atcc 8293 [J]. Bioresour Technol, 2023, 385: 129399. 
[40] KRUSCHITZ A, PEINSIPP L, PFEIFFER M, et al. Continuous process technology for glucoside production from sucrose using a whole cell-derived solid catalyst of sucrose phosphorylase [J]. Appl Microbiol Biotechnol, 2021, 105(13) : 5383-5394. 
[41] TAN X, DU W, LU X. Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria [J]. Appl Microbiol Biotechnol, 2015, 99(5) : 2147- 2154.

Share
Back to top
China Daily Chemical Science Technology, Electronic ISSN: 2997-710X Print ISSN: 2997-7096, Published by Art and Design