Volume 2,Issue 3
Fall 2025
水凝胶负载生物活性分子在美容和皮肤治疗中的研究综述
水凝胶由于独特的结构,良好的物理化学特性以及独特的生物相容性,近年来越来越受到人们的关注和研究,具有广泛的应用前景,包括皮肤治疗和美容领域。文章旨在简要介绍水凝胶的基本概念,分类方法;讨论研究水凝胶负载生物活性成分的相关策略,探究水凝胶的释放机制,分析水凝胶在美容与皮肤治疗应用以及水凝胶最新进展和目前面临的挑战。
[1] Merino M, Tornero-Aguilera J F, Rubio-Zarapuz A, et al. Body Perceptions and Psychological Well-Being: A Review of the Impact of Social Media and Physical Measurements on Self-Esteem and Mental Health with a Focus on Body Image Satisfaction and Its Relationship with Cultural and Gender Factors. Healthcare, 2024, 12(14): 1396.
[2] Johns J R, Vyas J, Ali F M, et al. The Dermatology Life Quality Index as the primary outcome in randomized clinical trials: a systematic review[J]. British Journal of Dermatology, 2024, 191(4): 497-507.
[3] Rencz F, Gulácsi L, Péntek M, et al. DLQI ‐R scoring improves the discriminatory power of the Dermatology Life Quality Index in patients with psoriasis, pemphigus and morphea[J]. British Journal of Dermatology, 2020, 182(5): 1167-1175.
[4] Twiss J, Meads D M, Preston E P, et al. Can We Rely on the Dermatology Life Quality Index as a Measure of the Impact of Psoriasis or Atopic Dermatitis?[J]. Journal of Investigative Dermatology, 2012, 132(1): 76-84.
[5] Hebert A, Thiboutot D, Stein Gold L, et al. Efficacy and Safety of Topical Clascoterone Cream, 1%, for Treatment in Patients With Facial Acne: Two Phase 3 Randomized Clinical Trials[J]. JAMA Dermatology, 2020, 156(6): 621-630.
[6] Goldklang M, Wells J M, D’armiento J. Telemedicine for Patients with Chronic Pulmonary Diseases in the COVID-19 Era and Beyond[J]. Annals of the American Thoracic Society, 2022, 19(9): 1448-1450.
[7] Hoffmann J, Gendrisch F, Schempp C M, et al. New Herbal Biomedicines for the Topical Treatment of Dermatological Disorders[J]. Biomedicines, 2020, 8(2): 27.
[8] Wu K, Kwon S H, Zhou X, et al. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and
Approaches[J]. International Journal of Molecular Sciences, 2024, 25(23): 13121.
[9] Zheng J, Fan R, Wu H, et al. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation[J]. Nature Communications, 2019, 10.
[10] Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science[J]. Food Reviews International, 2021, 37(3): 313-372.
[11] Nambiar M, Schneider J P. Peptide hydrogels for affinitycontrolled release of therapeutic cargo: Current and potential
strategies[J]. Journal of Peptide Science, 2021, 28(1): e3377.
[12] Sorrenti V, Burò I, Consoli V, et al. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects[J]. International Journal of Molecular Sciences, 2023, 24(3): 2019.
[13] Akbarian M, Khani A, Eghbalpour S, et al. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action[J]. International Journal of Molecular Sciences, 2022, 23(3): 1445.
[14] Kussmann M, Abe Cunha D H, Berciano S. Bioactive compounds for human and planetary health[J]. Frontiers in Nutrition, 2023, 10: 1193848.
[15] Donnelly R F, Singh T R R, Garland M J, et al. Hydrogel ‐ Forming Microneedle Arrays for Enhanced Transdermal Drug
Delivery[J]. Advanced Functional Materials, 2012, 22(23): 4879-4890.
[16] Zhao Y, Lin Z, Liu W, et al. Controlled Release of Growth Factor from Heparin Embedded Poly(aldehyde guluronate) Hydrogels and Its Effect on Vascularization[J]. Gels, 2023, 9(7): 589.
[17] Pérez-Rafael S, Ivanova K, Stefanov I, et al. Nanoparticledriven self-assembling injectable hydrogels provide a multi-factorial
approach for chronic wound treatment[J]. Acta Biomaterialia, 2021, 134: 131-143.
[18] Saeed S, Barkat K, Ashraf M U, et al. Flexible Topical Hydrogel Patch Loaded with Antimicrobial Drug for Accelerated Wound
Healing[J]. Gels, 2023, 9(7): 567.
[19] Zagórska-Dziok M, Sobczak M. Hydrogel-Based ActiveSubstance Release Systems for Cosmetology and Dermatology Application: A Review[J]. Pharmaceutics, 2020, 12(5): 396.
[20] Bertsch P, Diba M, Mooney D J, et al. Self-Healing Injectable Hydrogels for Tissue Regeneration[J]. Chemical Reviews, 2022, 123(2): 834-873.
[21] Hou X, Li J, Hong Y, et al. Advances and Prospects for Hydrogel- Forming Microneedles in Transdermal Drug Delivery[J]. Biomedicines, 2023, 11(8): 2119.
[22] Cao H, Duan L, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 426.
[23] Akl E M, Hasanin M S, Dacrory S. Skin mask hydrogelbased natural sources: Characterization and biological properties
evaluations[J]. Bioactive Carbohydrates and Dietary Fibre, 2023, 29: 100355.
[24] Li L. Gene hydrogel platforms for targeted skin therapy: bridging hereditary disorders, chronic wounds, and immune related skin diseases[J]. Frontiers in Drug Delivery, 2025, 5: 1598145.
[25] Lin X, Zhang H, Zhang H, et al. Bio-Printed Hydrogel Textiles Based on Fish Skin Decellularized Extracellular Matrix for Wound Healing[J]. Engineering, 2023, 25: 120-127.
[26] Luo G X, Lu Y F, Huang C. [Role of functional hydrogel in promoting wound healing][J]. Zhonghua shao shang yu chuang mian xiu fu za zhi, 2023, 39(1): 9-14.
[27] Bashir S, Hina M, Iqbal J, et al. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications[J]. Polymers, 2020, 12(11).
[28] Li L, Yu F, Zheng L, et al. Natural hydrogels for cartilage regeneration: Modification, preparation and application[J]. Journal of
Orthopaedic Translation, 2019, 17: 26-41.
[29] Li F, Tang J, Geng J, et al. Polymeric DNA hydrogel: Design, synthesis and applications[J]. Progress in Polymer Science, 2019, 98.
[30] Siqueira E C D, França J a a D, Souza R F M D, et al. Recent advances in the development of the physically crosslinked hydrogels and their biomedical applications[J]. Research, Society and Development, 2023, 12(8): e18212843073.
[31] Wang B-X, Xu W, Yang Z, et al. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications[J]. Macromolecular Rapid Communications, 2022, 43(6): 2100785.
[32] Sharma S, Tiwari S. A review on biomacromolecular hydrogel classification and its applications[J]. International Journal of Biological Macromolecules, 2020, 162: 737-747.
[33] Takigami M, Amada H, Nagasawa N, et al. Preparation and properties of CMC gel[C]. Joint Symposia of the Materials-Research- Society-of-Japan, 2006: 713-716.
[34] Milad F, Nadia A, Ali F, et al. Natural hydrogels, the interesting carriers for herbal extracts[J]. Food Reviews International, 2022, 38(S1): 713-737.
[35] Ahsan A, Tian W-X, Farooq M A, et al. An overview of hydrogels and their role in transdermal drug delivery[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70(8): 574- 584.
[36] Siqueira E C D, França J a a D, Souza R F M D, et al. Mecanisms of the chemical crosslinking to obtain the hydrogels: Synthesis, conditions of crosslinking and biopharmaceutical applications[J]. Research Society and Development, 2023, 12(8):
e18312943072-e18312943072.
[37] Hu Y, Ren G, Deng L, et al. Degradable UV-crosslinked hydrogel for the controlled release of triclosan with reduced cytotoxicity[J]. Biomaterials Advances, 2016, 67: 151-158.
[38] Bai Q, Gao Q, Hu F, et al. Chitosan and hyaluronic-based hydrogels could promote the infected wound healing[J]. International Journal of Biological Macromolecules, 2023, 232: 123271.
[39] Ehrbar M, Rizzi S C, Hlushchuk R, et al. Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering[J]. Biomaterials, 2007, 28(26): 3856-3866.
[40] Nguyen M K, Jeon O, Dang P N, et al. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects[J]. Acta Biomaterialia, 2018, 75: 105-114.
[41] Tian Z, Ai B, Yang Y, et al. Lysozyme amyloid fibril-chitosan double network hydrogel: Preparation, characterization, and application on inhibition of Nε-(carboxyethyl)lysine[J]. International Journal of Biological Macromolecules, 2024, 263: 130011.
[42] Gaharwar A K, Peppas N A, Khademhosseini A. Nanocomposite hydrogels for biomedical applications[J]. Biotechnology and
Bioengineering, 2014, 111(3): 441-453.
[43] Han L, Lu X, Wang M, et al. A Mussel-Inspired Conductive, Self- Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics[J]. Small, 2017, 13(2).
[44] Kasiński A, Zielińska-Pisklak M, Oledzka E, et al. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems[J]. International Journal of Nanomedicine, 2020: 4541-4572.
[45] Koetting M C, Peters J T, Steichen S D, et al. Stimulus-responsive hydrogels: Theory, modern advances, and applications[J]. Materials Science and Engineering: R: Reports, 2015, 93: 1-49.
[46] Garshasbi H, Salehi S, Naghib S M, et al. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery
systems[J]. Frontiers in Bioengineering and Biotechnology, 2023, 10: 1126774.
[47] Vegad U, Patel M, Khunt D, et al. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1270364.
[48] Qian C, Zhang T, Gravesande J, et al. Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release[J]. International Journal of Biological Macromolecules, 2019, 123: 140- 148.
[49] Hu X-E, Shi Y-R, Zhu X, et al. Temperature-responsive hydrogel for tumor embolization therapy[J]. Journal of Drug Delivery Science and Technology, 2023, 80: 104107
[50] Eyigor A, Bahadori F, Yenigun V B, et al. β-Glucan- Based Temperature Responsive Hydrogels for 5-ASA Delivery[J]. Carbohydrate Polymers, 2018, 201: 454-463.
[51] Li J, Wu C, Chu P K, et al. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications[J]. Materials Science and Engineering: R: Reports, 2020, 140: 100543.
[52] Nguyen M K, Alsberg E. Bioactive factor delivery strategies fromengineered polymer hydrogels for therapeutic medicine[J]. Progress in Polymer Science, 2014, 39(7): 1235-1265.
[53] Cheng J, Chen Z, Lin D, et al. A high clinically translatable strategy to anti-aging using hyaluronic acid and silk fibroin co-crosslinked hydrogels as dermal regenerative fillers[J]. Acta Pharmaceutica Sinica B, 2025, 15(7): 3767-3787.
[54] Pérez L A, Alonso J M, Pérez-González R, et al. Injectable hyaluronic acid hydrogels via Michael addition as dermal fillers for skin regeneration applications[J]. Biomaterials Advances, 2025: 214364.
[55] Chelu M, Musuc A M, Aricov L, et al. Antibacterial Aloe vera Based Biocompatible Hydrogel for Use in Dermatological Applications[J]. International Journal of Molecular Sciences, 2023, 24(4): 3893
[56] Liu X, Shu W, Zhong Q, et al. A Baicalin Liposome-Based Temperature-Sensitive Hydrogel for Treating Ultraviolet-Induced Skin Damage[J]. International Journal of Nanomedicine, 2025: 7935-7951.
[57] Wang Z, Yuan J, Xu Y, et al. Oleaeuropaea leaf exosome-like nanovesicles encapsulated in a hyaluronic acid / tannic acid hydrogel dressing with dual “defense-repair” effects for treating skin photoaging[J]. Materials Today Bio, 2024, 26: 101103.
[58] Haider A, Shaw J C. Treatment of acne vulgaris[J]. JAMA, 2004, 292(6): 726-735.
[59] Bettoli V, Micali G, Monfrecola G, et al. Effectiveness of a combination of salicylic acid-based products for the treatment of mild comedonal-papular acne: a multicenter prospective observational study[J]. Giornale Italiano di Dermatologia e Venereologia, 2020, 155(6): 744-748.
[60] Lu J, Cong T, Wen X, et al. Salicylic acid treats acne vulgaris by suppressing AMPK/SREBP1 pathway in sebocytes[J]. Experimental Dermatology, 2019, 28(7): 786-794.
[61] Ye C X, Yi J, Su Z, et al. 2% supramolecular salicylic acid hydrogel vs. adapaline gel in mild to moderate acne vulgaris treatment: A multicenter, randomized, evaluator ‐blind, parallel ‐controlled trial[J]. Journal of Cosmetic Dermatology, 2024, 23(6): 2125-2134.
[62] Kowalczyk A, Przychodna M, Sopata S, et al. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications[J]. Molecules, 2020, 25(18): 4125.
[63] Folle C, Marqués A M, Mallandrich M, et al. Colloidal hydrogel systems of thymol-loaded PLGA nanoparticles designed for acne treatment[J]. Colloids and Surfaces B: Biointerfaces, 2024, 234: 113678.
[64] Lin Y-Y, Lu S-H, Gao R, et al. A Novel Biocompatible Herbal Extract-Loaded Hydrogel for Acne Treatment and Repair[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021(1): 5598291.
[65] Kircik L H. Doxycycline and minocycline for the management of acne: a review of efficacy and safety with emphasis on clinical implications[J]. Journal of drugs in dermatology : JDD, 2010, 9(11): 1407-1411.
[66] Pandey P K, Jain S D, Parashar A K, et al. Formulation and Evaluation of Hydrogel for the Treatment of Acne[J]. Int. J. Adv. Res. Med. Chem, 2022, 4(1): 1.
[67] Kamoun E A, Kenawy E-R S, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. Journal of Advanced Research, 2017, 8(3): 217- 233.
[68] Nguyen N N T, Nguyen T T D, Vo D L, et al. Microemulsionbased topical hydrogels containing lemongrass leaf essential oil
(Cymbopogon citratus (DC.) Stapf) and mango seed kernel extract (Mangifera indica Linn) for acne treatment: Preparation and in-vitro evaluations[J]. PLOS ONE, 2024, 19(10): e0312841.
[69] Zhao Y, Wang X, Qi R, et al. Recent Advances of Natural- Polymer-Based Hydrogels for Wound Antibacterial Therapeutics[J].
Polymers, 2023, 15(15): 3305.
[70] Zhang Y, Wang Y, Li Y, et al. Application of Collagen-Based Hydrogel in Skin Wound Healing[J]. Gels, 2023, 9(3): 185.
[71] Cai C, Li W, Zhang X, et al. Natural Polymer-Based Hydrogel Dressings for Wound Healing[J]. Advances in Wound Care, 2025,
14(6): 295-322.
[72] Correa S, Grosskopf A K, Lopez Hernandez H, et al. Translational Applications of Hydrogels[J]. Chemical Reviews, 2021, 121(18): 11385-11457.
[73] Liu H, He L. Intelligent hydrogel-based dressings for treatment of chronic diabetic wounds[J]. World Journal of Diabetes, 2025, 16(5): 104937.
[74] Zhang W, Hu J, Wu H, et al. Stimuli-responsive hydrogel dressing for wound healing[J]. APL Materials, 2025, 13(1).
[75] Liu H, Ai R, Liu B, et al. Dual ROS/Glucose-Responsive Quercetin-Loaded Supramolecular Hydrogel for Diabetic Wound Healing[J]. Biomacromolecules, 2025, 26(3): 1541-1554.