ARTICLE

Volume 1,Issue 7

Fall 2025

Cite this article
3
Download
14
Citations
59
Views
20 September 2025

基于日内GARCH模型LAD估计的混成检验

华锋 朱1 燕珊 陈2 兴发 张2
Show Less
1 韶关学院 数学与统计学院, 中国
2 广州大学 岭南统计科学研究院, 中国
ASDS 2025 , 1(7), 79–84; https://doi.org/10.61369/ASDS.2025070017
© 2025 by the authors. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

基于GARCH模型的LAD估计和混成检验理论,本文将LAD估计引入日内高频数据GARCH模型,得到了对应的混成检验统计量以及估计的渐近正态性。数值模拟和实证研究的结果显示,相比低频数据模型,基于高频数据模型的估计效果更好,对应的波动率代表模型能够更好的捕捉波动率信息,参数估计的精确度也更高。

Keywords
最小绝对值偏差估计(LADE)
GARCH模型
混成检验
References

[1] Engle R F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica[J], 1982, 50(4): 987–1007.
[2] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.
[3] Visser M P. GARCH parameter estimation using high-frequency data[J]. Journal of Financial Econometrics, 2011, 9(1): 162-197.
[4] Lee S, Hansen B. Asymptotic Theory for the GARCH (1,1) Quasi-Maximum Likelihood Estimator[J]. Econometric Theory, 1994, 10(1): 29-52.
[5] Hall P, Yao Q. Inference in ARCH and GARCH models with heavy-tailed errors[J]. Econometrica, 2003, 71(1): 285-317.
[6] Peng L, Yao Q. Least absolute deviations estimation for ARCH and GARCH models[J]. Biometrika, 2003, 90(4): 967-975.
[7] Li G, Li W K. Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity[K].Biometrika, 2008, 95(2): 399-414.
[8] 李莉丽, 张兴发, 李元, 等. 基于高频数据的日频GARCH 模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68-78.
[9] 李莉丽, 张兴发, 邓春亮, 等. 基于高频数据的GARCH 模型拟极大指数似然估计[J]. 应用数学学报, 2022, 45(5): 652-664.
[10] 陈燕珊, 张兴发, 田玥, 等. 基于高频数据的GARCH 模型拟极大指数似然估计的一种portmanteau Q 检验[J]. 广州大学学报(自然科学版), 2024, 23(5):54-68.
[11]Box G E P, Pierce D A. Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models[J]. Journal of the American Statistical Association, 65, 1509-1526.
[12]Ljung G M, Box G E P. On a Measure of Lack of Fit in Time Series Models[J]. Biometrika, 1978, 65(332): 297-303.
[13]McLeod A I, Li W K. Diagnostic Checking ARMA Time Series Models Using Squared-Residual Autocorrelations[J]. Journal of Time Series Analysis, 1983, 4(4): 269-273.
[14]Li W K, Mak T K. On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity[J]. Journal of Time series Analysis, 1994, 15(6):627-636.
[15]Min C, Ke Z. Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations, Journal of Econometrics, 2015, 189(2): 313-320.
[16] 陈燕珊. 基于高频数据的GARCH 模型的混成检验研究[D]. 广州大学,2024.

Share
Back to top