ARTICLE

Volume 1,Issue 2

Fall 2024

Cite this article
5
Citations
12
Views
20 December 2024

细胞培养技术在神香草天然产物研究中的应用

岩 王1
Show Less
1 齐齐哈尔市实验中学, 中国
EAE 2024 , 1(2), 18–21; https://doi.org/10.61369/EAE.2024020007
© 2024 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

神香草是重要的药用植物,具有抗氧化、抗真菌和止咳等多种活性。利用现代细胞培养技术获得神香草次级代谢产物,对于开发新型药物具有重要意义。本文介绍了神香草细胞悬浮培养技术和农杆菌介导转基因毛状根培养技术的研究现状及影响因素,同时提出了未来的研究方向。

Keywords
神香草
愈伤组织
悬浮培养毛
状根
次级代谢产物
References

[1] Jahantigh O , Najafi F, Naghdi Badi H, et al. Essential oil composition of Hyssop ( Hyssopus officinalis L.) under salt stress at flowering stage[J]. Journal of Essential Oil 
Research, 2016, 28(5): 458-464.
 [2] Rashidi S, Eikani M H, Ardjmand M. Extraction of Hyssopus officinalis L. essential oil using instant controlled pressure drop process[J]. Journal of Chromatography A, 
2018, 1579: 9-19.
 [3] Kara N, Baydar H. Morphogenetic, ontogenetic and diurnal variabilities of hyssop (Hyssopus officinalis L.) [J]. Res. Crop. 2012, 13: 661-668.
 [4] Venditti A, Bianco A, Frezza C, et al. Essential oil composition, polar compounds, glandular trichomes andbiological activity of Hyssopus officinalis subsp. aristatus (Godr.)
 Nyman from central Italy[J]. Industrial Crops & Products, 2015, 77: 353-363.
 [5] Borrelli F, Pagano E, Formisano C, et al. Hyssopus officinalis subsp. aristatus: An unexploited wild-growing crop for new disclosed bioactives[J]. Industrial Crops and 
Products, 2019, 140(11): 111594.
 [6] Džamić A M, Soković M D, Novaković M, et al. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and 
deodorized extracts[J]. Industrial Crops and Products, 2013, 51: 401-407.
 [7] Özer H, Sökmen M, Güllüce M, et al. In vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of Hyssopus officinalis L. ssp. angustifoli
us[J]. Italian Journal of Food Science, 2006, 18(1): 73-84.
 [8] Murakami Y, Omoto T, Asai I, et al. Rosmarinic acid and related phenolics in transformed root cultures of Hyssopus officinalis[J]. Plant Cell, Tissue and Organ Culture, 
1998, 53(1): 75-78.
 [9] Hristova Y, Wanner J, Jirovetz L, et al. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Can
dida species[J]. Biotechnology and Biotechnological Equipment, 2015, 29: 592-601.
 [10] Kizil S, Guler V, Kirici S, et al. Some agronomic characteristics and essential oil composition of Hyssop (Hyssopus officinalis L.) under cultivation conditions[J]. Acta Sci
entiarum Polonorum- Hortorum Cultus, 2016, 15: 193-207. 
[11] Mohan M, Seth R, Singh P, et al. Composition of the Volatiles of Hyssopus officinalis (L.) and Thymus serpyllum (L.) from Uttarakhand Himalaya[J]. National Academy 
Science Letters, 2012, 35(5): 445-448.
 [12] Nikolaeva T N, Zagoskina N V, Zaprometov M N. Production of phenolic compounds in callus cultures of tea plant under the effect of 2,4-D and NAA[J]. Russian Journal 
of Plant Physiology, 2009, 56: 45-49 . 
[13] Mustafa N R, De Winter W, Van Iren F, et al. Initiation, growth and cryopreservation of plant cell suspension cultures[J]. Nature Protocol, 2011, 6(6): 715-742.
 [14] Ikeuchi M, Sugimoto K, Iwase A. Plant callus: mechanisms of induction and repression[J]. The Plant Cell, 2013, 25(9): 3159-3173.
 [15] Abbasi B H, Ali H, Yücesan B, et al. Evaluation of biochemical markers during somatic embryogenesis in Silybum marianum L.[J]. 3 Biotech, 2016, 6(1):71-78.
 [16] Sivakumar G, Yu K, Paek K. Production of biomass and ginsenosides from adventitious roots of Panax ginseng in bioreactor cultures[J]. Engineering in Life Sciences, 
2005, 5: 333-342. 
[17] Jiao J, Gai Q Y, Wang W, et al. Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized As
pergillus niger[J]. Industrial Crops and Products, 2018, 112: 252-261.
 [18] Mulabagal V, Tsay HS. Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites[J]. International Journal of 
Applied Science and Engineering, 2004, 2: 29-48. 
[19]Ma J K, Drake P M, Christou P. Genetic modification: the production of recombinant pharmaceutical proteins in plants[J]. Nature Reviews Genetics, 2003, 4: 794-805.
 [20] Khan T, Abbasi B H, Zeb A, et al. Carbohydrate-induced biomass accumulation and elicitation of secondary metabolites in callus cultures of Fagonia indica[J]. Industrial 
Crops and Products, 2018, 126: 168-176.
 020 | Copyright © This Work is Licensed under A Commons Attibution-Non Commercial 4.0 International License.
[21] Pakseresht G, Kahrizi D, Mansouri M, et al. Study of callus induction and cell culture to secondary metabolite production in Hyssopus officinalis L.[J]. Journal of Reports 
in Pharmaceutical Sciences, 2016, 5(2): 104-111.
 [22] Zhao J, Davis L C, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnology Advances, 2005, 23 (4): 283-333.
 [23] Teale W D, Paponov I A, Palme K. Auxin in action: signalling, transport and the control of plant growth and development[J]. Nature Reviews Molecular Cell Biology, 
2006, 7 (11): 847-859.
 [24] Mohammad S, Khan M A, Ali A, et al. Feasible production of biomass and natural antioxidants through callus cultures in response to varying light intensities in olive (Olea 
europaea. L) cult. Arbosana[J]. Journal of Photochemistry and Photobiology B: Biology, 2019, 193(4):  140-147.
 [25] Kochan E, Wysokinska H, Chmiel A, et al. Rosmarinic acid and other phenolic acids in hairy roots of Hyssopus officinalis[J]. Zeitschrift Fur Naturforschung C, 1999, 54c: 
11-16.
 [26] Skrzypek Z, Wysokińska H. Sterols and triterpenes in cell culture of Hyssopus officinalis L.[J]. Zeitschrift für Naturforschung C, 2003, 58(5-6): 308-312.
 [27] Karakas F P. Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in 
calli formed under different combinations of plant growth regulators[J]. Plant Physiology and Biochemistry, 2020, 146(1): 384-391.
 [28] Máthé Á, Hassan F, Kader A A. In Vitro micropropagation of medicinal and aromatic plants. Berlin: Springer 2015: 305-336.
 [29] Guo M L, Ye J Y, Gao D W, et al. Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy[J]. 
Biotechnology advances, 2019, 37(1): 259-270.  
[30] Hussain M S, Fareed S, Saba A M, et al. Current approaches toward production of secondary plant metabolites[J]. Journal of Pharmacy and Bioallied Sciences, 2012, 4: 
10-20.
 [31] Yin Y C, Zhang X D,  Gao Z Q, et al. Over-expressing root-specific β-amyrin synthase gene increases glycyrrhizic acid content in hairy roots of glycyrrhiza uralensis[J]. 
Chinese Herbal Medicines, 2019, 11(2): 192-199.
 [32] Vinterhalter B, Savić J, Zdravković-Korać S, et al. Agrobacterium rhizogenes-mediated transformation of Gentiana utriculosa L. and xanthones decussatin-1-O-pri
meveroside and decussatin accumulation in hairy roots and somatic embryo-derived transgenic plants[J]. Industrial Crops & Products, 2019, 130: 216-229.
 [33] Deepthi S, Satheeshkumar K. Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cul
tures of Ophiorrhiza mungos L. [J]. Biochemical Engineering Journal, 2017, 117: 198-209.
 [34]Wang J, Li J L, Li J, et al. Production of active compounds in medicinal plants: from plant tissue culture to biosynthesis[J]. Chinese Herbal Medicines , 2017, 9(2): 115
125.
 [35] Kochan E, Szymańska G, Szymczyk P. Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks 
and nutrient sprinkle bioreactor[J]. Acta Physiologiae Plantarum, 2014, 36: 613-619.

Share
Back to top