Volume 3,Issue 1
网络药理学解析舒缓成分调控皮肤敏感的多靶点协同机制新视角
舒缓成分的多靶点协同作用是其调控皮肤敏感的核心优势,网络药理学作为整合生物信息学与系统生物学的交叉技术,为舒缓成分的机制研究提供了全新视角。文章系统阐述网络药理学的技术框架与核心分析方法,并探讨当前研究中的技术瓶颈与解决策略,为舒缓护肤品的精准配方设计与机制优化提供重要理论支撑与技术参考。
[1] Misery, L., Loser, K., & Ständer, S. Sensitive skin[J]. Journal of the European Academy of Dermatology and Venereology : JEADV, 2016,30(1): 2–8.
[2] Farage M. A. The Prevalence of Sensitive Skin[J]. Frontiers in medicine, 2019, 6: 98.
[3] Inamadar, A. C., & Palit, A. Sensitive skin: an overview[J]. Indian journal of dermatology, venereology and leprology, 2013, 79(1): 9–16.
[4] Escalas-Taberner, J., González-Guerra, E., & Guerra-Tapia, A. La piel sensible: un síndrome complejo[J]. Actas dermo-sifiliograficas, 2011, 102(8): 563–571.
[5] Wu, Y., Wangari-Olivero, J., & Zhen, Y. ARTICLE: Compromised Skin Barrier and Sensitive Skin in Diverse Populations[J]. Journal of drugs in dermatology, 2021, 20(4): 17–22.
[6] Proksch, E., Brandner, J. M., & Jensen, J. M. The skin: an indispensable barrier[J]. Experimental dermatology, 2008, 17(12): 1063–1072.
[7] Koh, L. F., Ong, R. Y., & Common, J. E. Skin microbiome of atopic dermatitis[J]. Allergology international : official journal of the Japanese Society of Allergology, 2022, 71(1): 31–39.
[8] Chen, Y., Sun, J., Chen, H., et al. Plant-Derived Bioactive Peptides: Extraction, Isolation, Purification, Pharmacological Activities, Structure-Activity Relationship, and Applications[J]. Journal of agricultural and food chemistry, 2025, 73(32): 19867–19906.
[9] Bylka, W., Znajdek-Awiżeń, P., Studzińska-Sroka, E., et al. Centella asiatica in cosmetology[J]. Postepy dermatologii ialergologii,2013, 30(1): 46–49.
[10] Liu, J., Xu, X., Jian, M., et al. Glycyrrhiza glabra extract as a skinwhitening Agent: Identification of active components and CRTC1/MITF
pathway-inhibition mechanism[J]. Journal of ethnopharmacology, 2025, 349: 119948.
[11] Jung, H. S., Kim, M. H., Gwak, N. G., et al. Antiallergic effects of Scutellaria baicalensis on inflammation in vivo and in vitro[J]. Journal of ethnopharmacology, 2012, 141(1): 345–349.
[12] Zhang, P., Zhang, D., Zhou, W., et al. Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine[J]. Briefings in bioinformatics,2023, 25(1): 518.
[13] Zhao, L., Zhang, H., Li, N., et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. Journal of ethnopharmacology, 2023, 309: 116306.
[14] Chen, Y., Huang, L., Li, W., et al. Exploring skin adverse events and mechanisms of apalutamide using data mining algorithms and network pharmacology[J]. Frontiers in pharmacology, 2025, 16: 1517874.
[15] Huang, J., Li, H., Liang, J., et al. Oxymatrine for treating atopic dermatitis: Network pharmacology, bioinformatics, metabolomics, and experimental validation[J]. International immunopharmacology, 2025,163: 115243.
[16] Shannon, P., Markiel, A., Ozier, O., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome research, 2003, 13(11): 2498–2504.
[17] Alamri, A. M., Assiri, A. A., Yousuf, A., et al. Exploring Nigella Sativa's medicinal capacity against skin cancer pathways using network pharmacology and molecular docking[J]. Scientific reports,2025, 15(1): 34609.
[18] Li, S., & Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application[J]. Chinese journal of natural medicines, 2013, 11(2): 110–120.
[19] Hameedat, F., Hawamdeh, S., Alnabulsi, S., et al. High Performance Liquid Chromatography (HPLC) with Fluorescence Detection for Quantification of Steroids in Clinical, Pharmaceutical, and Environmental Samples: A Review[J]. Molecules,2022, 27(6): 1807.
[20] van Haandel, L., & Stobaugh, J. F. Folate determination in human health: UPLC-MS/MS is the emerging methodology of choice[J]. Bioanalysis, 2013, 5(24): 3023–3031.
[21] Tsikas D. GC-MS and GC-MS/MS measurement of malondialdehyde (MDA) in clinical studies: Pre-analytical and clinical considerations[J]. Journal of mass spectrometry and advances in the clinical lab, 2023, 30: 10–24.
[22] Ru, J., Li, P., Wang, J., et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of cheminformatics,2014, 6: 13.
[23] Zhao, H., Yang, Y., Wang, S., et al. NPASS database update 2023: quantitative natural product activity and species source database for biomedical research[J]. Nucleic acids research, 2023, 51(1): D621– D628.
[24] Kim S. Getting the most out of PubChem for virtual screening[J]. Expert opinion on drug discovery, 2016, 11(9): 843–855.
[25] Editorial: ChemSpider a tool for Natural Products research[J]. Natural product reports, 2015, 32(8): 1163–1164.
[26] Rebhan, M., Chalifa-Caspi, V., Prilusky, J., et al. GeneCards: integrating information about genes, proteins and diseases[J]. Trends in genetics, 1997, 13(4): 163.
[27] Amberger, J. S., & Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes[J]. Current protocols in bioinformatics, 2017, 58: 1.2.1–1.2.12.
[28] Piñero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., et al. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucleic acids research, 2020, 48(1): D845–D855.
[29] Zhou, Y., Zhang, Y., Zhao, D., et al. TTD: Therapeutic Target Database describing target druggability information[J]. Nucleic acids
research, 2024, 52(1): D1465–D1477.
[30] Daina, A., Michielin, O., & Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic acids research, 2019, 47(1): W357– W364.
[31] Wang, X., Shen, Y., Wang, S., et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic acids research, 2017, 45(1):W356–W360.
[32] Yao, Z. J., Dong, J., Che, Y. J., et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models[J]. Journal of computer-aided molecular design, 2016,
30(5): 413–424.
[33]Gfeller, D., Grosdidier, A., Wirth, M., et al. SwissTarget Prediction: a web server for target prediction of bioactive small molecules[J]. Nucleic acids research, 2014, 42: W32–W38.
[34]Safran, M., Dalah, I., Alexander, J., et al. GeneCards Version 3: the human gene integrator[J]. Database : the journal of biological databases and curation, 2010:20.
[35]Zhang-James, Y., & Faraone, S. V. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM[J]. American journal of medical genetics, 2016, 171(5): 641–649.
[36]Kohl, M., Wiese, S., & Warscheid, B. Cytoscape: software for visualization and analysis of biological networks[J]. Methods in molecular biology, 2011, 696: 291–303.
[37]Cook, H. V., Doncheva, N. T., Szklarczyk, D., et al. Viruses. STRING: A Virus-Host Protein-Protein Interaction Database[J]. Viruses, 2018, 10(10): 519.
[38]Zhou, Y., Zhou, B., Pache, L., et al. Metascape provides a biologistoriented resource for the analysis of systems-level datasets[J]. Nature communications, 2019, 10(1): 1523.
[39]Wang, J., Zhong, J., Chen, G., et al. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2015, 12(4): 815–822.
[40]Singh P. Network and pathway enrichment analysis of Attention Deficit/Hyperactivity Disorder candidate genes[J]. Indian journal of psychiatry, 2020, 62(4): 400–406.
[41]Verbavatz, V., & Barthelemy, M. Betweenness centrality in dense spatial networks[J]. Physical review. E, 2022, 105(5): 054303.
[42]Li, G., Li, M., Wang, J., et al. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins[J]. IEEE/ ACM transactions on computational biology and bioinformatics, 2020, 17(4): 1451–1458.
[43]Charest, J., Loebenstein, P., Mach, R. L., et al. FunFEA: an R package for fungal functional enrichment analysis[J]. BMC bioinformatics, 2025, 26(1): 138.
[44]Pastorino, G., Cornara, L., Soares, S., et al. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review[J]. Phytotherapy research, 2018, 32(12): 2323–2339.
[45]Kanehisa, M., Furumichi, M., Tanabe, M., et al. KEGG: new perspectives on genomes, pathways, diseases and drugs[J]. Nucleic acids research, 2017, 45: D353–D361.
[46]Bai, X., Yao, M., Zhu, X., et al. Baicalin suppresses interleukin- 1β-induced apoptosis, inflammatory response, oxidative stress, and extracellular matrix degradation in human nucleus pulposus cells[J].Immunopharmacology and immunotoxicology, 2023, 45(4): 433–442.
[47]Zhang, L., Liu, X., Huang, M., et al. Metformin Inhibits HaCaT Cell Proliferation Under Hyperlipidemia Through Reducing Reactive Oxygen Species via FOXO3 Activation[J]. Clinical, cosmetic and investigational dermatology, 2022, 15: 1403–1413.
[48]Mekori Y. A. The mastocyte: the "other" inflammatory cell in immunopathogenesis[J]. The Journal of allergy and clinical immunology, 2004, 114(1): 52–57.
[49]Bandopadhyay, S., Mandal, S., Ghorai, M., et al. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review[J]. Journal of cellular and molecular medicine, 2023, 27: 593–608.
[50]Passante, E., & Frankish, N. The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell[J]. Inflammation research : official journal of the European Histamine Research Society,2009, 58(11): 737–745.
[51]Lyu, J., Diao, Q. C., Wang, S., et al. Study on screening and evaluation methods of cosmetics for people with facial sensitive skin[J]. Medicine, 2022, 101(31): e29975.
[52]Wang, Y., Viennet, C., Jeudy, A., et al. Assessment of the efficacy of a new complex antisensitive skin cream[J]. Journal of cosmetic dermatology, 2018, 17(6): 1101–1107.
[53]Bylka, W., Znajdek-Awiżeń, P., Studzińska-Sroka, E., et al. Centella asiatica in dermatology: an overview[J]. Phytotherapy research, 2014, 28(8): 1117–1124.
[54]Zhang, R., Zhu, X., Bai, H., et al. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment[J]. Frontiers in pharmacology, 2019, 10: 123.
[55]Pei, H., He, Z., Chen, W., et al. Network pharmacology and molecular docking analysis on the mechanism of Cordyceps militaris polysaccharide regulating immunity through TLR4/TNF-α pathwayss[J]. Journal of biochemical and molecular toxicology, 2023,
37(6): e23345.
[56]Jiashuo, W. U., Fangqing, Z., Zhuangzhuang, L. I., et al. Integration strategy of network pharmacology in Traditional Chinese Medicine: a narrative review[J]. Journal of traditional Chinese medicine , 2022, 42(3): 479–486.
[57]Karim, M. R., Morshed, M. N., Iqbal, S., et al. A Network Pharmacology and Molecular-Docking-Based Approach to Identify the Probable Targets of Short-Chain Fatty-Acid-Producing Microbial Metabolites against Kidney Cancer and Inflammation[J]. Biomolecules,
2023, 13(11): 1678.
[58]anehisa, M., & Goto, S. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic acids research, 2000, 28(1): 27–30.
[59]Poirel, C. L., Owens, C. C., 3rd, & Murali, T. M. Network-based functional enrichment[J]. BMC bioinformatics, 2011, 12: S14.
[60]Huang, Q., Wu, L. Y., Wang, Y., et al. 2013. GOMA: functional enrichment analysis tool based on GO modules[J]. Chinese journal of cancer, 2013, 32(4): 195–204.
[61]Chen, J., & Ye, W. Molecular mechanisms underlying Tao- Hong-Si-Wu decoction treating hyperpigmentation based on network pharmacology, Mendelian randomization analysis, and experimental verification[J]. Pharmaceutical biology, 2024, 62(1): 296–313.
[62]Ferreira, L. G., Dos Santos, R. N., Oliva, G., et al. Molecular docking and structure-based drug design strategies[J]. Molecules, 2015, 20(7): 13384–13421.
[63]Baysoy, A., Bai, Z., Satija, R., et al. The technological landscape and applications of single-cell multi-omics[J]. Nature reviews.
Molecular cell biology, 2023, 24(10): 695–713.
[64]Cedersund, G., & Roll, J. Systems biology: model based evaluation and comparison of potential explanations for given biological data[J]. The FEBS journal, 2009, 276(4): 903–922.
[65]Sulz, M. C., Burri, E., Michetti, P., et al. Treatment Algorithms for Crohn's Disease[J]. Digestion, 2020, 101: 43–57.
[66]Pitarch, B., Chagoyen, M., Ranea, J. A. G., et al. A review on Gene Ontology evaluations[J]. Database : the journal of biological databases and curation, 2025:58.
[67]Kanehisa M. The KEGG database[J]. Novartis Foundation symposium, 2022, 247: 91–252.
[68]Gudapati, H., Torigoe, R. M. S., Tahmasebifar, A., et al. Firstin- kind 3D bioprinted human skin model using recombinant human collagen[J]. Archives of dermatological research, 2025, 317(1): 704.
[69] Shin, H., Kim, S. E., Kim, C. Y., et al. M. Skin irritation testing using human iPSCs derived 3D skin equivalent model[J]. PloS one, 2025, 20(8): e0330306.