ARTICLE

Volume 1,Issue 6

Cite this article
5
Download
9
Citations
20
Views
20 August 2025

秘密共享中若干信息等式的证明

群 林1
Show Less
1 韩山师范学院数学与统计学院, 中国
ASDS 2025 , 1(6), 72–75; https://doi.org/10.61369/ASDS.2025060011
© 2025 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

在秘密共享方案中,复杂度是指参与者某个份额的最大长度与秘密长度的比值,而最优复杂度是指所有能实现某访问结构的方案复杂度的下确界。计算通用访问结构的最优复杂度问题一直悬而未决。现有研究多聚焦于确定最优复杂度的上界与下界。计算下界问题可转化为线性规划求解问题,而随机变量的公共信息属性与该求解问题密切相关,且该属性可拓展衍生出若干信息等式。在本文中,利用信息论及多拟阵的相关知识,证明了这一系列信息等式。这些等式将有助于确定最优复杂度的下界。

Keywords
秘密共享
复杂度
公共信息
多拟阵
References

[1] Gharahi, M., Khazaei, S.: Optimal Linear Secret Sharing Schemes for Graph Access Structures on Six Participants. Theoret. Comput. Sci. 771, 1-8 (2019). 
[2] Gharahi, M., Khazaei, S.: Reduced access structures with four minimal qualified subsets on six participants. Adv. Math. Commun. 12, 199-214 (2018). 
[3] Gharahi, M., Dehkordi, M.H.: The complexity of the graph access structures on six participants. Des. Codes Cryptogr. 67, 169-173 (2013). 
[4] Reza Kaboli, Shahram Khazaei, and Maghsoud Parviz: On ideal and weaklyideal access structures. Cryptology ePrint Archive, https://eprint.iacr.org/2020/483, (2020).
 [5] Gyarmati M., Ligeti P.: On the information ratio of graphs without high-degree neighbors. Discret. Appl.Math. 304(15), 55-62 (2021).
 [6] Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223-231 (1997). 
[7] M. Ito, A. Saito, and T. Nishizeki, Secret sharing scheme realizing any access structure, Proc. IEEE Globecom’87 (1987), 99–102.  
[8] Padro, C., Vazquez, L., Yang, A.: Finding Lower Bounds on the Complexity of Secret Sharing Schemes by Linear Programming. Discrete Applied Mathematics. 161, 1072-1084 (2013). 
[9] Martı-Farre, J., Padro, C.: On secret sharing schemes, matroids and polymatroids. J. Math. Cryptol. 4, 95-120 (2010). 
[10] Beimel, A., Orlov, I.: Secret Sharing and Non-Shannon Information Inequalities. IEEE Trans. Inform. Theory 57, 5634-5649 (2011).
 [11] Oriol Farras, Tarik Kaced, Sebastia Mart´ın, Carles Padr´o: Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing. IEEE Trans. Inf. Theory 66(11): 7088-7100 (2022).  
[12] S. Fujishige, Polymatroidal Dependence Structure of a Set of Random Variables,Information and Control 39 (1978), 55–72. 
[13] Csirmaz L.: Secret sharing and duality. J. Math. Cryptol. 15(1), 157-173 (2021).
 [14] Jafari, A., Khazaei, S.: On Abelian Secret Sharing: duality and separation. Cryptology ePrint Archive, https://eprint.iacr.org/2019/575, (2019). 
[15] Amir Jafari and Shahram Khazaei: Partial secret sharing schemes. Cryptology ePrint Archive, https://eprint.iacr.org/2020/448, (2020). 

Share
Back to top