Volume 1,Issue 3
Fall 2025
共形预测框架下的预测区间估计方法及乳腺癌应用研究
共形预测是一类具有有限样本保证的统计方法,能够在无需依赖模型分布假设的前提下实现有效的不确定性量化。本
文系统研究了完全共形预测的基本原理与算法框架,并重点分析了几种典型变体,包括分裂共形预测、交叉共形预测
和Jackknife方法,探讨其在提升预测效率和覆盖精度方面的优势。通过对回归问题的数值模拟与波士顿房价数据的
实证分析,比较各方法在预测区间宽度、覆盖率和计算效率上的表现。进一步将共形预测方法应用于乳腺癌风险预测
中,结合主成分分析与核密度估计分类器,实现了预测区域的动态更新。结果表明,共形预测能够有效表征分类模型
的不确定性,尤其在处理复杂数据时展现出良好的稳定性与适应性。
[1]Vovk V, Gammerman A, Shafer G. Algorithmic learning in a random world[M]. New York: Springer, 2005.
[2]Shafer G, Vovk V. A tutorial on conformal prediction[J]. Journal of Machine Learning Research, 2008, 9(3).
[3]Vovk V. On-line confidence machines are well-calibrated[C]//The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. IEEE, 2002:
187-196.
[4]Linusson H, Johansson U, Boström H, et al. Efficiency comparison of unstable transductive and inductive conformal classifiers[C]//Artificial Intelligence Applications and
Innovations: AIAI 2014 Workshops: CoPA, MHDW, IIVC, and MT4BD, Rhodes, Greece, September 19-21, 2014. Proceedings 10. Springer Berlin Heidelberg, 2014: 261-270.
[5]Barber R F. Is distribution-free inference possible for binary regression?[J]. 2020.
[6]Vovk, V. Conditional validity of inductive conformal predictors [C]//Asian Conference on Machine Learning. Proceedings of Machine Learning Research, 2012: 475-490.
[7]Lei J. Cross-validation with confidence[J]. Journal of the American Statistical Association, 2020, 115(532): 1978-1997.
[8]Tibshirani R. Conformal prediction: Advanced topics in statistical learning(lecture note)[J]. 2023.
[9]Barber R F, Candes E J, Ramdas A, et al. Predictive inference with the jackknife+[J]. The Annals of Statistics, 2021, 49(1): 486-507.
[10]Guan L. Localized conformal prediction: A generalized inference framework for conformal prediction[J]. Biometrika, 2023, 110(1): 33-50.
[11]Linusson H, Norinder U, Boström H, et al. On the calibration of aggregated conformal predictors[C]//Proceedings of the Sixth Workshop on Conformal and Probabilistic
Prediction and Applications. Proceedings of Machine Learning Research, 2017: 154-173.
[12]Nicora G, Rios M, Abu-Hanna A, et al. Evaluating pointwise reliability of machine learning prediction[J]. Journal of Biomedical Informatics, 2022, 127: 103996.
[13]Yin M, Shi C, Wang Y, et al. Conformal sensitivity analysis for individual treatment effects[J]. Journal of the American Statistical Association, 2024, 119(545): 122-135.
[14]Angelopoulos A, Bates S, Malik J, et al. Uncertainty sets for image classifiers using conformal prediction[J]. arXiv preprint arXiv:2009.14193, 2020.
[15]Candès E, Lei L, Ren Z. Conformalized survival analysis[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2023, 85(1): 24-45.
[16]Kuchibhotla A K, Berk R A. Nested conformal prediction sets for classification with applications to probation data[J]. The Annals of Applied Statistics, 2023, 17(1): 761-785.
[17]Vovk V. Cross-conformal predictors[J]. Annals of Mathematics and Artificial Intelligence, 2015, 74: 9-28.
[18]Gibbs I, Candes E. Adaptive conformal inference under distribution shift[J]. Advances in Neural Information Processing Systems, 2021, 34: 1660-1672.